FHE dIMS Uopuo]
arenbg qjrug

99913G PUaly, Uva(J g

oTeasay [8100§ PUB JIWOUOY JO MYIYSU] [eUCIjeN

‘[epout aures 3y} jo uotjwjuesardal pasLIRAUI] B UM
(1epow ) 2IN3HISU] [BUOHBN] 3Y3) [PPOw sUOL}R}IadX3 JUS3SISTIOd TRIUL[-UOU 93re|
% wWoIj paurejqo sjusal ) Furedwod £q JNO PaLLIed ST ST, 'suoryeydadxs uo
aa®y D U0ZLIOY 231Uy a1} jordut 313 Y3N0IT} JNC| TOHIPUOD [BUILLIS] 3]} ySnoiyy
Aquo jou £o1jod emnydo a1y s310381p UOZLIOY AWy AjruY # jo topwodwr Aressasau
ay} YoM 0y JuajXa Iy saururexs aded iy, ‘uolyE}aIdIajUL JUSIUIATOD BIHO
pue 2Au2p 07 A5Ba &1 UOLIN[OS ULIO} PIsOd 3 10} YPIYm ‘urajqold uozuoy Jwry
2jruyul ayrIpEnb-TRSUI] Y} UO PIBNIO] FBY| AINJBIAYI] IATEUR N[} JO PN *JFel)
-U0D U] "UOIM[08 21} JI0ISIP UeD YIIA ‘SUOlIpU0d [euruua) £q patxold aq jsnw
29up [euruuay oty jsed suonelRdxy "S[EPOW TONS SYE[NUIE 0} PIJINISUD aq
Jsnuw sarRq BYRP 2OUIS UozUOY Iwily juy w Aojdws A[Lressadeu s[apow suoiyeidad
-X3 JU2JSISUOD JRAUI[-UOU 2[eDE-2BIV] I8N DI SIBIDIGXS [0IUOD IMWIOUOISOIIBVN

2661 2unp
AVMVLISIA “J ¥dLIJ
_mwﬂ_.d

aivig "d MIUANY

iq

TOYLNOD) OINONODIOUDVIA
NO SNOZIMOH ALINIJ A0
LOVAW] EHL J0 SISATYNY NV




AN ANALYSIS OF THE IMPACT oF FINITE HORIZONS
ON MaAcRoOEcoONOMIC CONTROL

Andrew P. Blake and Peter F. dqmmnwéwww

1 Introduction

This paper is concerned with the practical application of optimal control techniques to
the macroeconomic policy design problem using empirically based econometric models
which embody forward-looking behaviour. In the context of UK models, such work can be
divided into two broad approaches. One has involved the extension to rational expectations
models of the well known non-linear optimal control algorithms' previously applied to
backward-looking models, as in Holly and Zarrop (1983) and Westaway and Wren-Lewis
(1992).2 The alternative strategy has been to derive linearised versions of the non-linear
models, thus allowing the more tractable properties of linear rational expectations models
to be exploited, as in Christodoulakis et al. (1991) and Weale et al. (1989). Surprisingly,
relatively little work has been done in attempting to reconcile these two approaches, in
particular in comparing the policy implications which might emerge from applying the
different techniques to the same problem. In this paper we explain why these differences
might be important by emphasising the role of the finite horizon which we show can have
large distortionary effects on the optimal control outcome.

Typically, macroeconomic models are large and non-linear; for example the National
Institute model of the UK economy on which the empirical analysis in this paper is based
contains just over 350 variables with the hehavioral content embodied in around half of
these (see NIESR, 1991). Inevitably, these models can only be solved using numerical tech-

niques, for example using an extended Gauss-Seidel method (see Fisher and Hughes Hallet,

1 The authors are grateful to Paul Fisher, members of the National Institute macromodelling team
and seminar participants at the University of Warwick and'at the 1991 meeting of the Society for Economic
Dynamics and Control, in Capri, Italy for comments on earlier drafts of this paper. The macroeconomic
programme at the Institute® financed by the ESRC.

1 See Ristem and Zarrop (1979) for example.

2 These two applications differ in that Holly and Zarrop (1983) impose model consistent expectations
via the optimisation algorithm itself, known as the penalty function method, while Westaway and Wren-
Lewis (1992) adopt an iterative scheme to enforce expectational consistency which is independent of the
optimisation,
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The plan of the rest of this paper is as follows. Section 2 reviews the role of the
terminal condition in finite horizon solution, illustrating the analytic results with both
the non-linear and linearised model. Section 3 extends this discussion to consideration
of the finite horizon control problem. In section 4, an empirical example is given using
the National Institute model of the UK economy. The crucial role of instrument damping
is illustrated for the case where the government is less forward-looking than the private
sector. We also show that the non-linear control solution is close to the linear solution
based on the local derivatives. Accordingly, in section 5, we carry out control exercises
on a linearised version of the model (which we show in the appendix has remarkably
similar properties to the non-linear model itself). We address the same issues as section 3,
but now illustrate the implications of extending the time horizon and compare the results
where possible with the infinite horizon analytic solution. Section 6 extends the analysis by
considering the same issues under the alternative assumption that the reputational solution
is not sustainable and only the ‘discretionary’ time consistent solution is available. Section
7 concludes by drawing out the implications for conventional approaches to empirically

based policy analysis.

2 Finite horizons and terminal conditions

It is well known that the solution to a non-linear macroeconomic model requires the spec-
ification of a terminal condition if the model involves forward-looking expectations and
is solved over a finite horizon. This arises because the solution will be affected by the
expected values of variables beyond the end of the solution period. Conventionally, a
terminal condition is imposed which assumes that the variable of which expectations are
formed has reached its equilibrium path (Minford et al., 1979). The equilibrium path can
be fixed values for the expectations past the terminal date, but is more usually a constant
(or zero) growth condition.

The question for practitioners is to set a terminal condition which does not distort the
notional true solution by imposing such equilibriumn behaviour in advance of the date at

which this is appropriate. It is often argued that this can be done by setting the terminal
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date of the simulation sufficiently far into the future so that a change in the terminal date
(or indeed a change in the specification of the terminal condition itself) does not alter the
solution over the period of interest.

We can illustrate these issues by considering a case where the correct terminal condi-
tion is available analytically but we impose an arbitrary one instead. Blake (1990) shows
how terminal conditions affect the solution of linear rational expectations models. This
helps us analyse the error in the initial period jump for variables where the terminal con-

dition is enforced at too early a date. A simple linear model is given by

T4l | _ | ®11 Mz 2t :v
F Y az1 az | |z,
where z, is a predetermined state variable and r; a non-predetermined (expectational)

variable which is free to take on any value at time ¢.5

Following Blanchard and Kahn (1980) diagonalise the transition matrix so that

an a2 | _ 1 m - A, O 1 my 2)
az  @zz. 1 ma 0 M|l mo

where A, is the unstable eigenvalue (greater than unity), A. is the stable eigenvalue (less
than or equal to unity) and the matrix of left eigenvectors, partitioned conformably, has

the first element normalised to unity. Setting
Iy = IHH\ENuNH = —nz AMV

ensures that the unstable roots are cancelled. It then follows that the predetermined

variable dynamics are given by
Zepr = (a1 — aggn)z = A,z (4)

At time T the correct terminal condition is the same, i.e. £ = —nz7.* Remember that

for non-linear models this cannot be calculated analytically, requiring an ad hoc alternative

8 This two variable model is a very simple one. We can augment the state vector to include further
predetermined or even exogenous variables (¢) with their own dynamic equation. The simplest is e;41 =
aet. Setting o to unity gives step shocks, and to zero impulse shocks. Further expectational variables
could be included. The results in this section generalise straightforwardly.

® We might refer 3..._:: as a transversality condition rather than a terminal condition in this context.
For a saddlepath stable linear model many arbitrary terminal conditions will impose stable behaviour over

a m_._:.b ro_.mu.m.n_ but no terminal condition other than the transversality condition will ensure stability over
any time horizon.




terminal condition. To keep things simple, we assume a zero growth condition, zr = zr41.

In the context of our linear model, this can be expressed as the requirement that

_ _&n
Rk s - zr. (5)

Using this as a terminal condition, the general result of Blake (1990) shows how the

saddlepath condition needs to be modified. In this case, n in (3) should be replaced by

__(-Gr-y)
Tﬁu = Qu..ln:‘:v

do= B = —Agpn (6)

where

Gr_¢= ﬁm —ma(an /(1 - nuu:v AWwvﬁ.lc

1- my Tnn—\ﬁ_. -_— auuvv yl
and #; and 3, are the values of the free and predetermined variables found using the

terminal condition. Similarly, (4) is modified to

m~+_ = ﬁn: = n_n.m.ﬁ.lcv.m. Ad

with the error in the initial jump is given by

HIQ‘.«. u vn
my — Grmy  mg g

Lo — Lo = Iﬁ

These expressions illustrate clearly how the distortion to the true analytic solution

will be smaller, the closer Gy is to zero for any positive k. This will be achieved exactly

if agy /(1 — az2) = =1/my implying that the imposed terminal condition reflects the true

behaviour of the system at that time.” Alternatively, and more usually, the terminal

horizon can be chosen to be sufficiently long. This reduces the error in the earlier periods

of the simulation since G tends to zero as k increases because it is discounted by the ratio
of the stable to unstable roots, which must be less than unity.

Intuitively it is clear that if the predetermined variables evolve so that a shock is tem-

porary (A, < 1), then the temporary effects of Gr will gradually die away until the original

equilibrium path is reached, even if the unstable root Ay is close to unity. Alternatively,

7 Imposing this correct terminal condition will only be equivalent to the more usual rate of growth
condition as the time horizon hecomes large.
B

if any shock is permanent (A, = 1), so that z tends to a new steady state value, then the
error on the initial jump is certain to disappear only when A7 7 tends to zero. For, say, an
unstable root A, = 1-01,°T has to be very large.

The standard way to test whether the terminal condition is distorting the solution is
to solve the model over different time horizons for the same shock and check whether the
jump is invariant. This procedure is described for a range of large macro models in Wallis
et al. (1986), and is carried out on a slightly older version of the NIESR model in Ireland
and Wren-Lewis (1989). We briefly repeat this exercise here for the version of the model
to be used in our empirical work.® The only forward-looking variable in our model is the
exchange rate. The linearised model has an unstable root very close to the unit circle at
around 1-01; this implies very forward-looking behaviour. We examine the sensitivity of
the initial jump in this variable to an impulse shock to government spending. Figure la
illustrates the results for 10 and 12 year simulation horizons. These results seem to confirm
the conclusion of Ireland and Wren-Lewis (1989) that a simulation horizon of ten years is
sufficient to avoid distortion of the results.

This has an important implication for the control problem. If we allow instrument
movements over the entire simulation horizon then instruments could be (and we will
argue below will be) moving sharply at the end of the simulation horizon. But for the
terminal condition not to be affecting the simulation we need at least 10 years at the end
when instruments constant. This implies a ‘tail’ is required to the optimisation where the
instruments are constrained to a neutral setting, either a constant level or a steady growth
rate, to allow the terminal condition effects to be minimised.

The conclusion that a 10 year tail is sufficient may be too optimistic since, as discussed
above, it may not apply in the case of shocks where the steady state values change. This
point is partly illustrated in figure 1b which shows how the initial jumnp in the exchange
rate for a permanent shock to government spending does not seem to settle down as the
simulation horizon is extended. This is certainly informative but fortunately we can more
easily analyse the implications of changing the terminal date by working with a linearised

version of the model. This is derived in the same way as in Wesle et al. (1989), and

8 Details of the modifications we macle to the model are given in the appendix.
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F1G. la. Exchange rate response to an impulse change to government spending.
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FI1G. 1b. Exchange rate response to a permanent change to government spending. »

lookingness (i.e. with an unstable root close to the unit circle) will be substantially affected

by the finite horizon through the mechanism of the terminal condition. We now turn to
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consideration of its influence on the control problem itself.

3 Finite horizons and optimal control

The finite nature of the terminal date also has implications for the optimal control problem,
quite independent of the issues regarding the solution of forward-looking models described
above. In fact, the difference between the finite and infinite time solutions is present even
for purely backward-looking models. The problem manifests itself as sharp changes in
the policy instruments near the end of the optimisation horizon. This well known result
is easily explained for the hackward-looking case. Because of the recursive nature of the
instruments on the targets, the finite time control solution can be computed one period
at a time taking the terminal period first and working backwards (see Bellman, 1957).
Since policy instruments co not have anticipated effects, the policy setting in the last
period will only be set with reference to the cost in that period. This may imply that
it will be beneficial to manipulate policy in the final few periods if, say, an instrument
movement involves short term benefits but long run costs which are incurred beyond the
optimisation horizon. When the model is causal, it is possible to minimise the distortion
to the results by setting the optimisation horizon sufficiently far in the future. This will
not necessarily remove the irregular movement of policy instruments near the terminal
date but it will render the chosen target variables unaffected over the initial periods, the
immediate horizon of interest. In fact, it has been demonstrated that this finite horizon
distortion will tend to zero in such cases subject to certain regularity conditions described
in Flam and Wets (1987); for forward-looking models, however, we explain how the finite
horizon solution may not necessarily converge on an analytic infinite time solution, even
for an arbitrarily long terminal horizon.

The appropriate solution techniques for the control problem applied to forward-looking
models are also well known. For linear models, the infinite horizon analytic solution is
described in Levine (1988), for example. Most practical applications, however, involve
non-linear models solved over finite horizons. In these cases, the control solutions are based
on a Newton-type algorithm which calculates local derivatives numerically and solves the

model iteratively, assuming at each stage that the model is linear (see Riistem and Zarrop,
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1979). This algorithm applies equally to forward- and backward-looking models, although
there have been relatively few applications of finite horizon optimal control on forward-
looking non-linear modefs (see Westaway and Wren-Lewis (1992) for one example). Yet
there are a number of interesting issues that arise when finite horizon control methods are
applied to models with forward-looking expectations.

First, however, it is instructive to describe the policy problem and the rational ex-
pectations solution for the same simple analytic model employed in section 2. We now
introduce policy instruments where their open-loop trajectory is taken as given; for now,
this is convenient for expositional purposes since the instrument settings in the finite hori-
zon control case can be interpreted as exogenous variables which are to be manipulated to

derive the optimal outcome. Accordingly, the linear model (1) is modified to

(2] = o e 2]+ (0] .

where u, is our policy instrument. The assumed policy problem is to minimise the following

discounted quadratic loss function by choice of u
1 T
C=35) plezt +ul) 9)
T =0

where T is the optimisation horizon, p is the discount factor, the target is to drive the
predetermined state to zero and we include instrument costs, with a weight normalised to
unity. More generally we would allow all variables to be vectors, we could include time-
varying weights, or we could incorporate costs associated with the non-predetermined
states and for non-zero targets, hut the essence of the analysis would be unchanged. A
necessary condition for the solution to this problem to be well defined is that the discounted
sum of the target variables should be finite; this will be guaranteed if the rate of discounting
is greater than the rate of growth of the target deviation which in our case is zero; this is
sometimes referred to as Grinold’s condition, as in Flam and Wets (1987).

To find the rational solution we need to generalise (3) and (4). Expectational variables

depend on future expected instrument values, and are calculated using a modification to (3)

e = —nze — (nby + b)Y AT wigd (10)
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where n and A, are as before. If the policy instruments are zero this collapses to the
previous solution. Remembering that A\, = a;; —a;2n we modify (4) and the predetermined

state evolves according to

Zea1 = Apze + brug = ((ann — Aa)by + a_uFVWU»HT_Et. (11)
i=0

Equations (10) and (11) demonstrate the significant difference between backward-
and forward-looking models, that for the latter future instrument values affect the current
state. It is apparent that the size of the unstable root is crucial in determining how much
future instrument values affect current behaviour, as the inverse acts as a discount factor.
We have already noted in section 2 that the finite horizon control problem implies
that the instrument must be set at some constant rate for the duration of the ‘tail’ up to
the terminal date and implicitly beyond that date as well. Let f be the time up to which
there is active control, and T be the terminal date. If u is set at some constant level uo,

after f < T, then fort < f

H.I
—ie b + b;
Ty = —nz — (nb + by AT Ny — e & 11

t e — (nb um t+ M e=1) u (11a)

1t

Zep1 = Aaze + biue — ((ann — A)hy +a_.n$u M»H..l:.i
i=0
(@11 = Al + argbe
- 11b
YT I (118)
andif ¢ > f
b
Ty = —nz — =>_” .H.Wn:a (12a)
1- b

Zegr = Agzp — ﬁ|au>m|w......lw+n|_uw:3 (12b)

where we have used ayy + az2 = A, + Ay in deriving (12). From (11) and (12), it is appar-
ent that the last period value of the instrument exerts a significant influence throughout
the entire optimisation because it implicitly carries on at that level for all periods past

the terminal time. On these grounds, it is clear that the time horizon, f, at which the

12

instrument is set ‘neutral’ needs to be sufficient so that AL(Ay, — 1) is a large number before
the effects of the last period instrument can be safely assumed not to dominate the entire
path of the target vdriables. The closer the unstable root to unity, the further away the
tail needs to be.

The analysis so far, however, has only demonstrated the effect of a given change
in the expected value of a future policy instrument on the current state. For the finite
horizon control solution, we need to demonstrate that the effects of policy instruments
in the distant future on the cost function itself should tend to zero as the optimisation
horizon is extended. In fact, it is in this respect that there is a crucial difference between
the backward- and forward-looking control problem. As with the backward-looking case,
the standard control solution will deliver sharp changes to the policy instruments near
the terminal date. But now, importantly, the effect of this distortion will not necessarily
disappear as the terminal date is pushed further back. It is easy to demonstrate this for
the simple univariate model described above. From equation (11), the effect of a change
in the policy instrument at time N on the state variable at time j is given by

(1-r9)

(1=r)

2 = (o1 — Aedor + arabp) AN

duy (12)

where r = A, /)., from which we can derive the total effect of a unit change in the policy

instrument on the cost function (9) as

dw
M«H =C(z)+ C(u) (13)

where the cost associated with the resultant movements in the state variables is given by

u..
Q&H»uuza:a: mﬁwm.u_uwmn;?% .Mm.a_: |1J§u2 33

while the direct cost associated with the movement in the policy instrument is given by
C(u) = pV (15)

It is necessary for C(u) to become larger than C(z) as the movement in the policy in-

strument is extended further into the future (i.e. as N becomes larger); if not, instrument

13



instability will result since it will always be possible to improve welfare by manipulating
the policy instrument in the distant future to improve the overall value of the cost function
since the costs of doing so will be increasingly outweighed by the benefits. Comparison of
the expressions for C(z) and C(u) show that this instability problem will only be avoided
if p/A? tends to zero, that is if the discount factor is less than the squared inverse of the
unstable root. This may be seen as a forward-looking extension to the conditions derived

in Flam and Wets (1987) for backward-looking models.

Once we extend this analysis to the multivariate framework, it will be the most
forward-looking root of the model, that is the one closest to the unit circle, that must
be compared with the discount factor. Indeed in our empirical work to be described be-
low, we have found that small changes to the discount rate can make relatively small effects

over the finite horizon but cause the infinite horizon solution to fail.
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4 Finite horizon control on the non-linear model

In this section, we use the NIESR UK model (version 11.6, modified as described in the
appendix), a large _wc:-m:mE. macroeconometric model of the UK economy to illustrate
the issues raised in the last section. It is assumed that policymakers have two targets,
GDP growth and price inflation, which they attempt to control using the level of short
term interest rates and government expenditure (public authority consumption). Both
instruments are constrained to have a five year tail out of a total optimisation horizon
of 10 years (we should note that this tail is much too short since we showed in section
2 that a tail of 10 years was preferable even in the face of temporary shocks). It is
assumed that the desired growth rate for GDP is at its base level while for inflation it is
3% below base levels (which approximates closely to a long run target of zero inflation).
Deviations from these desired targets are weighted equally. A cost is also accorded to
changes in policy instruments relative to base. Costs associated with deviations of the
target variables are discounted by 0-99 a quarter while we examine the consequences of
different assumptions regarding .:5 discounting of instrument damping. Thus the objective

function to be minimised is given by

00Q4
C= Ma“ 0-99°[5? + 97 + ke(Ar] +¥AGY))
t=91Q1
where p is the rate of price inflation (GDP deflator), g is the annual growth of real GDP
(compromise measure) and Ar and AG are the one period changes in policy instruments.
The base path used for the exercise is based on the National Institute February 1991
forecast.

Figures 3a—d illustrate the optimal control strategy which emerges when instrument
movements are discounted at 0-99 a quarter in line with the target variables. As might
be expected from the previous discussion, the results display the property that policy
instruments are moved sharply in the last few periods (s.e. in the periods before the tail
begins). More implausibly still, most of the improvement in inflation performance which
occurs in the early years of the optimisation can be directly attributed to the appreciation

in the exchange rate which is caused by the promise of the higher interest rates in the later

15
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periods. Of course, this policy is a very stark example of the time inconsistency problem
whereby policymakers would have a strong temptation to renege on this policy when the
time came to raise interest rates. Yet this policy is implausible not simply because of
the time inconsistency property but more importantly because such an announced policy

setting would not be credible on the basis of observed past behaviour.

There are three possible responses to this problem. One is to derive the infinite time
solution to the control problem instead. We defer this to the next section. An alternative
is to address the issue of credibility more formally by deriving a time consistent solution;
again, this is deferred to the discussion in section 6. Finally, the only practical choice if the
model is genuinely non-linear is to build some mechanism into the optimisation problem
which rules out such implausible instrument settings. One such mechanism would be to
assume that the credibility of sharp changes in instruments diminishes the further into the
future such changes are proposed. We attempt to capture this ‘announcement credibility’
mechanism by assuming that the weight on instrument damping increases through time;
from the last section, we argued that the rate of increase of this damping had to be greater
than the squared inverse of the dominant forward-looking root of the model in order to
guarantee that the solution was well defined; this analytic result was borne out by our
experience with our empirical application. Figures 3a—d illustrate the control outcomes
for a discount rate of 1-25 on instrument damping (compared to 0-99 in the previous run).
Clearly, the policy instrument paths now look much more plausible and the improvement

in inflation which occurs is not dominated by the effect of the policy settings in the tail.

Yet the control solution is somewhat unsatisfactory since it is critically dependent on
how much instruments are damped and leaves a number of crucial questions unanswered.
Would the solution be very different if the optimisation horizon were lengthened? Would
it converge on the infinite time solution? Since the non-linear model becomes very compu-
tationally expensive to solve over longer time horizons, it would be preferable to work with
the linearised version of the model. A rough indication of the degree of linearity of the
model is given in figures 4a-d which compare the control outcomes of the non-linear opti-
misation problem with that obtained if it is asswmed that the local derivatives (used in the

non-linear optimisation algorithm) represent the true model. This quasi-linearised version
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of the model shows that the responses of the targets to the instruments is approximately
linear. Of course this type of approximate linearisation does not solve the problem of the
finite horizon. For this the more sophisticated linearisation technique already described is

peeded. The results of adopting this linear approach are described in the next section.

5 Control using the linearised model

As described above, using the linear model offers a way of removing from the analysis
of optimal policy the problems caused by the terminal condition interacting with the
optimisation. We simply solve for expectations using the saddlepath property. The long
run responses of the model embodied in the linear model are, of course, somewhat arbitrary
but can be carefully imposed to be consistent with the expected long-run behaviour of the
macroeconomic model.

In this section we concentrate on optimal time inconsistent control. There are two
methods we use to calculate such policies. Firstly, the usual infinite honizon linear-
quadratic solution. This solution is analytic, and described in, for example, Levine (1988).°
Secondly, we calculated finite horizon m._vsﬁm_ policies using directly analogous methods to
the control exercises carried out on the non-linear model. Expectations are calculated using
the Blanchard-Kahn method and the optimal policy calculated using the same method.!®
The linear problem solves in one iteration with exact derivatives. As before, instruments
were allowed to vary over a fixed period, say 20 quarters, and then are set flat for a tail
of 20 quarters with the cost function set to be minimised over the total 40 periods. The
instruments, however, are set at these final levels permanently, as is implicit in the non-
linear model. With the linear model we are able to extend the optimisation horizon to 200
quarters easily, and experiment with tails of arbitrary length.

In the notation of section 4 the cost function used with the linear model is

T
C = 3°099(p = %), + g} + Ar} + AGH]

t=0

9 The control problem does require numerical solution, however, as the solution to a matrix Ricatti
equation must be found. All the results reported in this section and the next were calculated using a series
of Gauss programs.

10 The derivatives for the control problem were calculated using the appropriate multivariate gener-
alisations of (11) and (12).
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where variables are all as before and the weights have all been normalised to unity. A slight
difference for the linear model is the inclusion of an explicit target variable for inflation,
p*, with its own dynamic equation. T, the optimisation horizon, is varied between 40 (the
shortest horizon we consider) and infinity. The target inflation rate is 1% below base and
the target for growth is the base value.

The first example is where we fix the period of active control and vary the length of
the tail. The results are illustrated in figures 5a and 5b. The period of active control is 40
quarters in all cases, but the tail is variously 10, 20 and 30 quarters. The departure from
the previous section is that we can also show the infinite horizon solution.

The effects on inflation over the first 40 quarters are almost identical, with the shortest
tailed run showing a marked upward movement towards the end. However, the instrument
trajectories, illustrated in figure 5b, are very different. One point worth noting is that
in general the qualitative finite horizon results are very similar to those that we obtained
with the non-linear model (compare figure 5b and 3a). Just as in the non-linear model the
impressive inflation control is achieved by promising increases in interest rates at the end
of the optimisation (figure 5b) with the consequent impact on the profile of the exchange
rate. This effect is nothing to do with terminal conditions, and everything to do with the
finite horizon of the optimal control problem. The infinite horizon control shows a smooth
interest rate path, which is clearly trending upwards towards the end.

Two points are to be noted. Firstly, a 30 period tail (for this control exercise) seems
long enough for the tail length to be having no effect on the optimisation, a result we have
confirmed by extending the tail further to almost no effect. Note that this is with the
model solved using Blanchard-Kahn. Using terminal conditions, this might easily not be
enough. A second, important, conclusion is that lengthening the tail does not bring us
any closer necessarily to the infinite horizon solution. In fact, the model with a 10 period
tail is ‘closest’ to the infinite time solution over first 40 periods, the length of the original
control problem.

This is the type of effect we would hope to eliminate by extending the period of active
control. Figure 6 shows the interest rate paths for 20, 40, 60 and 80 periods of active

control, each with a 20 quarter tail, and the infinite horizon solution. After 40 quarters the
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inflation rate (not illustrated) settles down to an indiscernibly different pattern. Similarly
growth is insufficiently different to reproduce. JFrom the graphs it is clear that the ma.,.n.
horizon control is converging to the infinite but very slowly. Even after 160 periods of
active control only the first 25 periods instrument values are the same as the infinite
horizon solution.

Two furthet remarks can be made here. The effects illustrated are rather different
if we reduce the discount factor slightly. We were unable to solve for the infinite horizon
solution with a discount factor of 0-98. The finite horizon problem remains well defined
and further simulations (not reported) seem to confirm that the forward-looking behaviour
of agents is being exploited by the optimal policy as future interest rate movements get
larger rather than smaller. The results are not as clear cut as the simple example in section
3 might suggest.

With further simulations, we were also able to confirm with the linear model that with
an increasing weight on the instrument changes, at a rate of 1.2¢, the qualitative control

results are unaffected by the finite horizon. Inflation gains are possible in the short run
]

24

but without the ability to costlessly change interest rates in the future the spectacular
control over long periods that were obtainable disappear. But this form of control is
suboptimal, even if more credible. We can analyse time consistent (and therefore credible

by construction) straightforwardly using the linear model. This we do in the next section.

6 Time consistent control using the linearised model

There have been several time consistent equilibria suggested for linear rational expectations
models, with the best known the dynamic programming method suggested by Oudiz and
Sachs (1985). This is technically a feedback Stackelberg equilibrium to a dynamic game,
and an alternative feedback Nash equilibrium can be calculated in a similar way.!! Such
feedback equilibria are difficult (if not impossible) to calculate for non-linear models (see
de Zeeuw and van der Ploeg, 1991) but can be caleulated for the linearised model. An
appealing feature of both feedback equilibria is that they are subgame (Markov) perfect,

and as such are a complete description of the equilibrium strategies both on and off the
equilibrium path.

Table 1

Welfare losses for the infinite horizon cont-
rol problem using the linearised model

Control regime Welfare loss
Time inconsistent 0-805
Feedback Stackelberg 0-839
Feedback Nash 0-849

The infinite horizon optimal time consistent policies are readily calculated and the wel-
fare losses associated with both the time consistent and time inconsistent control regimes
are shown in table 1. It is apparent that for the control problem we consider the restriction

to time consistent policies does not seriously affect the welfare losses, with at most a 5%

11 Blake (1992) gives iterative schemes to calculate these two equilibria for quite general linear
rational expectations models.

o
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reduction in welfare. The actual trajectories of the instruments and targets in all three
regimes are so similar that we do not reproduce them here, However, we can conclude from
this that the nature of the control problem is that it is not inherently time inconsistent.
The rather incredible instrument movements required by the finite time optimisation make
the optimal policy appear more time inconsistent than is actually the case.

Unfortunately, we are unable to calculate finite horizon feedback equilibria as the
dynamic programming solutions only have a proper interpretation in the steady state.
To evaluate the importance of finite horizons for time consistent control we must seek
an alternative solution. We use the method proposed by Westaway (1989). This is an
open loop time consistent solution and takes the form of a simple modification to the time
inconsistent solution method (see Westaway, 1989, for details).

Figures 7a and 7b show the optimal trajectories for government spending for the time
inconsistent and time consistent optimal policies, where the tail is always 20 quarters and
the control horizon is from 100 to 180 periods for the consistent solution and 100 to 160
and the infinite horizon solution when the policy is time inconsistent. The control of the
target variables is very similar in both cases. It is very noticeable that the consistent
policy converges after 100 quarters, confirmed by the behaviour of interest rates (figure
8), in marked contrast to the time inconsistent path (figure 6). Both instruments settle
down to near their long run values in all illustrated cases, a feature absent from the
optimal inconsistent exercises. It is perhaps surprising that such similar control of targets
is achievable with very different instrument trajectories.

These exercises show that a major advantage of linearising the model is that we
can calculate a variety of time consistent equilibrin to help us analyse the source of time
inconsistency. As expected, we have been able to confirm that open loop time consistent
equilibria seem to suffer much less from the problems associated with the finite horizon,

although the horizon does need to be rather greater than usually available for non-linear

control exercises.
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7 Conclusions

Many of the lessons to be drawn from this paper,are as much salutary as definitive. Starting
from the firmly held viewpoint that optimal control techniques ought to play a central role
in guiding policymakers in their conduct of macroeconomic policy, we have argued that
many questions regarding the practical use of these techniques are not only unresolved
but also _E.mo_uw unconsidered. We have shown that attempts to use empirically based
macroeconomic models which embody forward-looking behaviour present policy-makers
with problems which do not arise in applications based on small analytic models. Central
to these problems is the role of the finite horizon which must necessarily be assumed in
work based on non-linear models. We have shown that this aspect of the problem distorts
the implied policy solution in two ways, first because of the effect of the terminal condition
on the solution (and the associated need to impose a tail on policy instruments), second
because of the effect of the finite horizon on the control strategy itself. We have identified
a class of problems, in particular when the government is less forward-looking than the

private sector, where the finite horizon control solution can be calculated but where it
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will be of dubious validity since it will not converge to an infinite horizon solution as the
optimisation horizon is extended. We have shown how the convergence properties can be
restored by asswming;that the weight on instrument damping increases through time; this
damping may be interpreted as capturing the declining credibility associated with future
instrument movements.

Of course, whether or not this type of instrument damping is required to define the
optimal control solution or not, the resulting solution will anyway be time inconsistent.
However, consideration of credibility is central to the question of how empirically based
models should be used in the design of macroeconomic policy. If, as is conventionally
assumed, the time inconsistent policy is derived as the benchmark optimum that a govern-
ment should strive for if it could build up sufficient reputation, then our finding here that
this solution will not always be defined is an important one. On the other hand, if it is
assumed that time consistent strategies are likely to be the only policies that are likely to
remain sustainable, then we are still left with the problem that any finite horizon strategies
derived on this basis are also likely to be distorted, although to a much lesser extent than
with the time inconsistent cases. .

Consequently, the results of this paper seem to point to the inevitable conclusion that
meaningful policy analysis is best carried out on linearised representations of the original
non-linear models so that the infinite horizon analytic results can be exploited. If this is
true then it also follows that a much more rigorous scrutiny of the linearisation techniques
that have been developed is required. This scrutiny would involve more thorough exam-
ination of the robustness of the techniques in capturing the behaviour of the underlying
model as well as a more systematic examination of any important non-linearities in the
model. Of course, once these analytic solutions are available for use on empirically based
models, this facilitates a more rigorous analysis of the determination of the credibility
of policymakers and the precommitment period associated with different policy regimes.

These topics are the subject of our current research agenda.
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APPENDIX

A.1 Modifications to the model

The model used in this exercise is a variant of the Zm.:osﬁ.mamsw:nm Domestic Econometric
Model 11.6 (NIDEM 11.6). It was modified so that all except one of the expectational
variables are solved in ‘backwards mode’; for these variables expectations are generated by
time series equations rather than set equal to model predictions. The exception to this is
the exchange rate, where the usual model equation was retained. The non-linear control
exercises were carried out on the model with no further changes.

This modification was made to simplify the linearisations. We describe why below.
However, the modifications had little effect on the simulation properties of the model.
Figures Al and A2 show two key responses of NIDEM 11.6 in modified and unmodified
form to a temporary public authority consumption shock, our fiscal instrument. These are
the effective exchange rate and growth. Model properties are not seriously distorted by
the changes, although growth is rather damped. The effect on inflation (not illustrated)

was almost identical for the two different models.

A.2 Linearising the model .

To linearise the model we used the procedure described by Maciejowski and Vines (1984),
based on Kung (1978), modified to reproduce the dynamic multipliers from step changes
to inputs. The output responses to chosen input variables are realised into a state-space
representation by performing a singular value decomposition of the system Hankel matrix.
For a detailed description of the method see Weale et al. (1989). The resulting linear

model is of the form

Zi41 = h.nu + ‘mﬂ.u ﬁ»P..._.m_v

= QN- + U:.—. ﬁb.:uv

where z; is a vector of predetermined state variables, y, the outputs and u, the inputs.
The predetermined states are analogous to principal components of the original model and

have no direct economic interpretation (Moore, 1981). A major advantage of this method

30

Fic

Difference from base

. Al. Exchange rate response to a 1% one quarter increase in government spending.

Difference from base

FIG. A2. Inflation response to a 1% one quarter increase in government spending.

0.00 prepeye

-0.01 |

-0.02 |

-0.03 |

-0.04

-0.05

-0.06

A

-0.07 .
0o 4

12

20

24 28 32

36

40

0.10 T

0.08 .. »
0.06
0.04

0.02

0.00 |4

— = Forwards
- Backwards

=0.02

2 i "

-0.04 .
0 4

31

24 28 32

36

40




is that the states are antomatically ordered so that the lust state is the one that contributes
least to the output dynmmics, so the state dimension can be reduced to a compact model
that describes the dynamics accurately.

Expectations have to be dealt with carefully. In order to calculate the rational expec-

tations solution we require a linear state-space model in the following form:

T”t_ — \;u; + Bu, (A28)
Teg1 Ie
W= Q _”Hﬁ +b.ﬂu A.}.NTV

where x¢ is a vector of non-predetermined variables. (A.2a) is the multivariate extension
to (8) in the text. (A.2b) is sometimes known as an observation equation. As described
above, such models can be solved for a rational expectations solution using the method
proposed by Blanchard and Kahn (1980). If the model is saddlepath stable with as many
free variables as unstable roots the solution is unique.

The linearisation was done with an exogenous real exchange rate, which was treated
as an additional input. The model in this form has no forward-looking variables and the
linearisation procedure used to reproduce the input-output behaviour of the model. With
the real exchange rate as an input, we can include its equation after the linear model
has been determined. This additionally means all the right hand side variables must to
be included as inputs or outputs. As there are two targets and two instruments, three
input variables and four outputs are required. The inputs were the Treasury bill rate,
government spending and the real exchange rate (p). The outputs were inflation, expected
one quarter inflation (p°), growth and the net overseas asset ratio (nar). All of the outputs
are measured as deviations in levels from their base values and simulations run over ten
years from 91Q1 to 00Q4. Simulation were also run over ten years from 93Q1 to check
for base dependencies and non-linearities, with very similar results. All the responses
were asymptotically stable, but in some cases extrapolated to a steacdy state. 59 states
were found to be adequate to capture the dynamics of the responses exactly, with (A1)

specifically

Tt
Zt41 = h.ﬂh + B Qn Ab..nwﬂ_u
Pt
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where A, for example, is a 59 x 59 matnx.

Figure A3 shows two responses of the linear and the non-linear model measured as

deviations from*hase for 40 quarters for a permanent 0-5% increase in interest rates. This

level of accuracy is achieved for all responses. Linearisation error (with a fixed real exchange

rate) is effectively zero.

A.$ Validating the linearisation
: . 2 ) oti
The linearisation procedure is very accurate in reproducing the input-output characteristics

. . " 17
of the model, but does it mimic the rational expectations solution of the non-linear mode
]

With the given 4, B, C and D matrices the exchange rate can now be made to behave

The exchange rate equation used on the non-linear model

taking account of the variables being

as a forward-looking variable.

can be translated into a real exchange rate equation,
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defined as deviations from base, giving -
Piy1 = pe — 0-25(r¢ — p§) — 1-12nar,. (A.4)

Including this in the linear model obviously increased the number of states by one. The

model in this form can be validated against the non-linear model solved with the exchange
rate endogenous. For control purposes the changes in the instruments were included as

outputs as well as a target value for inflation, requiring three more state variables, a total

of 63. Our ‘control model’, the form (A2), is then:
= =— Non-linear

Difference from base

Zt+1 | _ a2 5 Tt s Linear
Tr__ =A —L +B 9_ (A.5a)
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where p; is the target value of inflation with behavioral equation p7,, = p} and Au, =
. . . ) ) FiG. A4. Growth response to 0-5% permanent increase in interest rates.
u¢ = ue—y. With the model set up in this way the instruments are set to always drive the _

outputs to zero. The model is saddlepath stable open loop with one eigenvalue of 1.0103. f 8 v r——r—r v v v r T r
Validating the linear model with the exchange rate endogenised is the next step. As "

sections 3 and 4 above show, the rational solution is affected by the terminal condition 6 .

used to solve the non-linear model. Therefore the linear model is solved using the same
ol ~ — =— Non-linear
N\ v Linear

narr = 0-25(narr—-; + narr-z + narr—3 + narr—y). (A.6)

terminal condition as the non-linear model for comparison. This is that: -
|

Although we could use the method suggested by Blake (1990) it is simpler to solve the

model on an unstable trajectory for an arbitrary nitial value, using a simple golden search

% Difference from base

tion. -2k

The results of this exercise are illustrated in figures A4 and A5. Although the solutions

are not identical in the way that the open loop (exogenous real exchange rate) simulations

-4 L " " " " N " A N
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are, the linear model is again remarkably similar in simulation response to the non-linear

FiG. A5. Real exchange rate response to 0-5% permanent increase in interest rates.

noﬁ._:mﬁo_oggornwnﬁisma_.m._znmenzinmxnvwnmmnwnm:Hwﬁmw:mmm:rmnonhmulnouam. —
model. We are confident that the linear model is an accurate representation of the non- ﬁ

linear model. i
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