1 Introduction

- Of the diverse problems faced in everyday applied work, those resulting from the reporting frequency of economic
time series provided by most statistical agencies are possibly the most Mm.,:ﬂm.ﬂ The problems arise when the
underlying temporal frequency of economic propositicns is higher than the. reporting frequency of the data
available for econometric analysis, a typical case being most macroeconomic variables. The effects on model
specification, estimation, identification and inference have been widely reported in the econometrics literature.
Some known examples ara :

a. Brewer [1973] analysed how temporal aggregation for the ARIMA model altered the orders of the AR
and MA components; this problem was also studied by Tiao [1972] and Wei [1981]; Weiss [1984] focused
instead on the impact due to systematic sampling; whereas Engle and Liu [1972] and Gewele [1978],
among others, analysed temporal aggregation in ARMA medels which included lagged excgenous terms.

b. The analysis in a multivariate framework, more akin to economic models, was discussed by Lutkepohl [1987;
1991) for a class of vector ARIMA processes, focusing on information loss and the effect of aggregation on
the forecast-error variance for the aggregate model. Nijman and Palm [1990], in contrast, looked at the
prediction of the augmented series from aggregate data.

c. Identification and estimation of ARIMA models subject to temporal aggregation was also discussed by
Palm and Nijman [1984] and Nijman and Palm [1990].

d. On the problems of inference, Campos et al. [1990] reported the impact of temporal aggregation on weak
exogeneity; Lippi and Reichlin [1981) looked at aggregation and persistence measures in trade cyclas;
Granger and Siklos {1895] showed how spurious cointegration may appear under temporal aggregation;
and Pierse and Snell [1995] analyzed the incidence of aggregation on unit root tests.

e, Finally, a recent paper by Rossana and Seater [1395] provides a broad discussion, and a good deal of
factual evidence, on the links between temporal aggregation, model structure and biased inference.

Regardless of the overwhelming evidence, testing the invariance of economic propositions to temporal aggre-
gation is often neglected in applied work.

To overcome the above situation, two possible (and, to some extent similar) routes are available. Firstly, the
analyst may either try to identify those features of the hypothesized original data generation process {DGP}
which are invariant to aggregation or, alternatively, derive the theoretical DGP for the aggregate process given
a DGP for the high frequency data and the particular temporal aggregation scheme. Secondly, a method that
vields data at the appropriate level of temporal aggregation (as implied by the set of economic propositions
to be tested) may be devised. The former approach ties economic propositions to the data by moving from
the original DGP, belonging to some modet class, to its aggregate at the frequency of reported data. For a
certain class of models, one example being vector ARIM A models, this seams to be a natural way to deal with
aggregated data. The alternative approach, as noted before, is to construct the higher frequency data adopting
a procedure that links the original and aggregate data DGPs, and directly use such data for analysis, This
paper follows the latter route, but restricts the presentation to the derivation of high frequency data and do not
consider the (adequate) use of such data constructs in empirical models. ) .

Another problem associated with temporal aggregation relates to the ad hoe use of partial &wwmmmmmwﬂm
information related to the series of interest and available to the researcher. For example, to produce short-term

LGriliches [1994, section V] gives a comprehensive view of the present situation un data availability for applied economic ressarch.
The discussion is nevertheless quite general, and the consequences of temporal aggregation are considered only Implicitly.

forecasts of economic activity, City commentators and (to some extent) academia watch the monthly movements
of retail sales or trade or manufacturing cutput, believed to be the best available indicators for broader measures
of demand and cutput.? We argue in Salazar ef al. {1997] that those procedures, at best, may be not using
information efficiently and, at worse, may be positively misleading. A similar argument was provided by Liu
and Hwa (1874, pp. 328] to justify the construction of their monthly eeanometric model. :

Having a formal method to approximate the higher frequency components of reported economic time series,
therefore, seems relevant. An estimate of the reliability of the data thus generated may be important since any
estimation using interpolated data should take account of measurement errors arising from interpolation.

In this paper we present a thorough Moente-Carlo analysis of a model-based method of interpolation. We first
diseuss existing econometric approaches to interpolation, and show how these extend paturally to a situation
in whick there a dynamic relationship between the interpoland and indicator variables. We derive theoretically
hoth interpolands and their variance-covariance matrix. We then present a Monte-Carlo study which suggests
that, in samples of reasonable length, our parameter estimates and interpolands are close to their true values.
Estimates of their variance prove to be a useful gnide to the experimental variance of both the parameters of
the model and the interpolands. The method of interpolation suggested here appears a viable means of dealing
with the problem.

2 Existing approaches to interpolation

2.1 Brief background

Economists and statisticians showed considerable interest in the estimation of unobserved data® during the eaxly
15G0s. The developments in the methodelogy may be classified, following Nijman [1985), as either data-based or
model-based® As an example of a dasa-based approach, we may wish to estimate an unobserved random vector®

Yo = (¥1,%2, 1 Ynk)’

on the basis of knowing some linear aggregates

k
Y= MUncSATHIé
u=1

or y; = Cy,,, where C =I & ¢’ and e a vector of dimension k x 1. If the aggregate is a flow variable, then ¢ is
a unit vector; if it is a rate of flow or an index oumber, then ¢ is the unit vector divided by k. If the aggragate
is a stock, then the last element of ¢ is 1 and the other elements are zero.

In the above notation, n indexes low-frequency perfods (say, quarters) and k indexes sub-divisions within
each low-frequency period (say, months within each quarter). As discussed by Pefia and Guerrero [1994], one
can assume yy adinits an ARIMA representation,

¥u — Elyulyos] = Ve,

24 typical example in the United Kingdum are the numerous series that analysts {and journalists) employ as 2 measure of the
su-called feel good factor, itself a pruxy of the level of economic activity.

30ur preference is for the term unobserved data rather than misging data, as mostly adopted In the literature. The latter defines
a rather general case of incomplete information either in survey data ur due to defective sampling in time serjes.

“Dasa-based methods in general rely on mathematical interpolation to determins the unobserved series, or optimisation relative
tw some luss functivn. The interpoland may be subsequently modulated by information contained in related series. Model-based

, . techniques, on the cuntrary, make explicit use of conditional expectations.

Where the h subscript indicates, in rather obvious notation, that the vector is of high frequency, and implicitly zssume the
highest sampling frequency equals the highest DGP frequency.




where e, ~ WN(0,0?), V is a lower-triangular matrix containing the moving average weights, and in addition
Elenlyon] = 0, Elenep|yos] = o®L The vector you = (...,y—1,%0) denotes the infinite past of yy, which in
practice is unknown. Early methods to augment y; assumed that Elyy|yos] followed some simple structure,
say Elys|yor] = 0, and that V could be derived considering y» followed a first or (at the most) second order
model; examples of this approach are the papers by Lisman and Sandee [1964], Clesjer [1966), Boot, Feibes and -
Lisman {1967] and Cohen, Muller and Padberg [1971]. Or the theoretical relationship that links y4 to ug could
be explicitly used, as done by Stram and Wei [1986] and Wei and Stram [1990].5

Alternatively, the researcher may have data on yy, available either at the beginning or the end of the series.
That assumption is adopted by Harvey and Plerse [1984]; Harvey [1989] and Gomez and Maravall [1994] provide
some useful extensions. They do so by recasting the problem in state-space form, using the Kalman filter and
the fixed point smoother to estimate the model parameters and the interpoland, respectively. This methodology
draws much from the paper by Jones [1980] on estimation of ARMA models with missing observations. A
drawback of the Kalman filter implementation is the requirement of observations on ¥}, to be available at some
poiat in the interpolation period, when normally it would be an unobserved vectar.

In a model-based approach, we substitute the vector ygy by a linesr combination of variables which contain
information that may help to explain yy; if we denote as x, the vector (or also the matrix) containing such
indicator variables, we now interpret ¥, =E[yx|xs] a5 & prefiminary series. The basic idea behind this method
was presented by Friedman [1962]; however, Chow and Lin [1971, 1976] grounded the theory {and estimation
methad) used in much of the subsequent applied work.” Parallel developments are found in the papers by
Denton [1971] and Ginsburgh [1973]. Later methods using model-besed techniques were, for the most part,
refinements of Denton’s and Chow and Lin’s contributions.

2.2 A regression-based approach

Since our procedure follows the model-based tradition, a natural starting point is Chow and Lin’s approach.
Their method can be formalized as follows. Suppose a vector series y is.observed at ¢ € 7 regularly spaced
periods, but higher frequency measurements are needed. Informatjon on several, or one related series to yis
available, with periodicity tu € Z. Denote by x a set of (strictly exogenous) related variables to ¥, observed
in sub-period w = 1....,k of period ¢ = 1,...,n. Therefore, we can define a nk x p matrix X; with typical
columm ;.5 = (Xi,11,%4,12, ) Xi, 199 4,21, -, Xiynis) , for i = 1,..,p and the subscript % identifies a series as being
of "high frequency’ (with the subscript { indicating *low frequency’ where appropriate). Assume an hypothetical
¥n vector and the related variables in X can be linked by a linear model

Ye=XpB+ v ) (1)

where  is the p x 1 vector of parameters, v), is a nk x 1 stationary vector of error terms, such that E(vi) =0
with covariance E(vyvi) = 8. Assume, in addition, that a time-invariant constraint links the vectors vy and
¥

Ye = MMHH CuYen O ¥ =Cy, (2)

(requiring monthly estimates to *add-up’ to quarterly fgures, for example) where the ¢, weights are defined in
section 2.1. We can therefore write

SStram and Wei, however, considered a model for the stationary series (1 — L)?yy, and {1 — B)%y;, where L and B are the Fw -
upetators on the high and low frequency data, respectively.

7As Pefla and Guerrerc [1994] correctly note, Chow and Lin did net conditien on mmv‘a_x_& but focused on the simultaneons ©
estimation of y;, and the regression maodel linking ), to yg, therefore ignoring the autocorrelation structure in the errurs, =

Cy, =CXuB+Cvi or yi=Xif+e 3)

with e;= Cv;, and covariance matrix Gy = CSpC’' = o2V (p). Chow and Lin {1973] assume that V(p) is a.
known function of p, a known parameter. Note in equation 3] that y; is the observed series, and X, contains
the observed values of the reiated series at the same frequency as y,. Taking into account the constraints 2, 8
and yi are estimated as

F=(XGX) X6y, @

and

Pn=XaB + (BLC'GTY)E {5)

with & = y; — X;3. The whole procedure, however, depends on the specification of error process vy, (which
defines g) in equation [1]. Chow and Lin {1973] assumed vy, followed an AR(1) process with to initisl conditions;
Fernandez [1981] discussed the case of v; being 8 random walk with vg = 0; Litterman [1983] considered an
AR(2) process, v, = $1Vh,—1 + d2vi 2 + 5 imposing the restriction ¢p = 1 — ¢, vg=02and vy =& The
researcher has a good margin of choice in terms of the error specification for vy and, provided the parameters
are admissible, the estimation of Gy and thus ¥, is straightforward.

Three problems are clearly identifiable in Chow and Lin’s procedure. First, the choice of the error process
vy, is heuristic; a search over possible processes and parameters is, clearly, impracticable, Secordly, equation
[1] does not accommodate dynamies, except as implied by the specification of V. Current econometric practice
suggests, however, that dynamic structures may be very important. In the following section we show a relatively
simple way to generalise the model [1), assuming the error process vy, is white noise and where lagged dependent
variables may be used; the inclusion of dynamics, in addition, allows us to take account of (possible) cointegrating
relationships linking the low and high-frequency data. Thirdly, their method relies on [1j being a regression
in the levels of the variables. For example, the practice of using logarithmic transformations to deal with
heteroskedasticity is almost universal. We set out below a general method which deals with these problems.

3 A dynamic generalisation of Chow and Lin’s method

In this section we present a dynamic Mmbmnmmmmﬂnﬁ. of equation [1] R Working in scalar terms for ease of exposition,
we rewrite equation [1] as

Fluew) MU Qu.ﬁubn@m )+ Mu_mahu tot Uy {6)

i=1 =1

' where the error terms v, are white noise and L is the lag operator on the high-frequency data, Ly, = Yeou—1-

We replace i by tu and ! by ¢ where appropriate to indicate specific elements of the relevant vectors. In our
notetion i enumerates the low-frequency periods and v the high-frequency subdivisions within a particular
period. The use of f{y:.) indicates that we may consider non-linear transformations of Yt,u- We have not
mdicated any transformations or lags of the 2 variables since these will normally be specified a priori and do
not affect the estimation of the model. Note also equation 6] is the replica of {1], appended to include lagged
values of the endogenous vector y:.u We can calculate the roots p; of the auxiliary equation 1 — MM.:HH .n_QN;_.. =0,
and write [6] as
. m P
[Ta - esD)feea) = > B+ v . ')

=1 i=1




As suggested by Ogachi and Fuluchi (1990], we premultiply [7] by [T,(1+ Sy ALY to obtain

k=1
[10 = 25295 ey =TT+ 30 ALY Bt + 20) ®)
K J =1 i

Denoting 1 — 37, 6; L% =0 as the polynomial whose roots are 7%, we can rewrite equation [8] as
k=i
Flyra) = Mm_.mh_.&.w@.r:v + :G + Mbw.hJﬂMU BiTitu + Veu) [tD)]
3 Fl 1=1 i

We can now premultiply equation [9] by the aggregator ¢ = (1 + M”r = 3., to estimate the model
using the available data, This is in fact a nmmnmmmhcﬂ equation for low-frequency moving averages. Note that only
every one in & of the elements {1 + M” " %) f(w ) corresponds to an abserved low-frequency period. Taking
care to avoid overlap of low-frequency ﬁmﬁoam in the summation, it follows that

) = Mm_ B floa) + M mc + Mih ﬁM BiTipn + Vi) (o)
=1
where B[f(y:.)] = F{g:—1,2) is the lag operator on the low-frequency data.
The roots of [T.(1+ Mv 1 bﬁq ) can be calculated, to transform this expression into the more conventional
structure

k=1
[Ia+3 ey =+ %L (1)
F i=1 1

and the equation which we estimate is, then,

x w w
Mz@n.;VuM@%M?p?MMUPMG+M”,;3§:+MU:+M3&.§_¢§
u=1 i u=1 w=1 | t & ¢ f]
Therefore, we have to replace each ;. in the high-frequency equation by (1 +3 7Lz, ., in the quarterly
equation. The regression has a moving-average errer process (MA(Z) in the above example), but since the v's
are functions of the #s (whiéh, in turn, are derived from the o's) the error structure depends on the regression
coefficients of the lagged values of 3. To derive the equations if Ut 15 expressed in first differences, we mEGJ..
set oy =1 and v(L) = —L*

If equation [9] were expressed in terms of yy, Tather than f{ys..), it would now be n_mmhmn_ in the low-
frequency values of the endogenous variable. To obtain an operational formulation of [12], we exploit the mean
value theorem and express f(ys.w) = F(Fe}+ 7' (41 ) (We, —F¢), where J; = y;/3 is the monthly average in quarter
t and g7, lies between ys,, and §. If the error of approximation e ., — 7 is relatively small, we have

3
3 Flvea) = 3£(3) : (13)
u=1
note that the errors of approximation sum to zero, Mmu“@re — %) = 0. For a logarithmic transformation, the

approximation becomes
3

> gy, =3ing — 33 {19

u=1l .
which can be seen to be equivalent to replacing the quarterly value M”wnu Iny, by three times the geomettic
mean of the monthly values .., u = 1,2,3. The geometric mean is never larger than the arithmetic mean,
but, if monthly movements are small compared with the monthly average, the approximation error ntrodwced
should be of little importance.

4 Estimation by Generalized Least Squares

The mode] to be estimated is therefore given by equation [12}, which is the equation (in terms of the data) we
can actually observe. This could be done by iterating over o, and thus § and v to find 2 GLS solution, or by
maximisation of the assaciated likelihood of [12]. We discuss in this section the GLS procedure, and in the next
sectien the maximum likelihood route. In both cases we condition on {vg,v..1 = 0}

To start the iterations, we set & = ( and therefore impose an identity variance matrix V; see equation
[4]. The first iteration yields an estimate of 4 from which o can be recovered directly. This is used in the
next iteration to construct the covariance matrix of the residuals (which, as we have seen, depends on a-and,
therefore, on #). We then proceed in a manner similar to Chow and Lin, minimising the sum of squared
residuals weighted by the inverse of the covariance matrix, iterating only over o, given the 3's are linear in a .
The remaining parameters in the model are estimated sinmitaneously estimated with a; see equation [4]. The
process continues until convergence in a.

The covariance matrix found at that stage is consistent with the lag structure estimated by generalised
least squares. But the GLS estimation of the parameters in the model, however, ignores the uncertainty in the
covariance matrix, arising from the estimation of c. This problem is conveniently addressed by estimating [22]
using maximum likelihood, which we consider below.®

5 Maximum likelihood solution

To estimate equation [12] by meximum Bikelihood, we should consider?

Lifyx,a,p8) = IHF@M# - I_om_ﬂ (@) — lm_nﬂ (@) te (15)
where e = CSpvy + vy for vy initial conditions, fi = f(yi), E(eel} = G = o2V (a), V() = CB8},C’ with 0?
unknown. The matrix §, has a band-diagonal structure, and is completely defined by the expression 1+ P
which picks the moving average process induced by aggregating [6]. The v are themselves functions of the lag
parameters in the underlying equation, @y {see section 3). The matrix V(a} is positive definite by construction
and assumed twice differentiable in cx.
Simple algebra enables us to rewrite the log-likelikood [15] as

£(85%,0,8) = O+ 1o W (a)] - 5 logefV (a) ™ (16)

using the decomposition G™1 = o~ 2W'W {dependence on o will be left implicit, when it leads to simpler
formulae); W can be obtained either from a Cholesky factorisation of V! or from the eigenvalues and sssociated
eigenvectors of V.'® QOne difficulty with the log-likelihood [16] is the dependence of V, and hence W on «,
which makes the first and second-order conditions somewhat expensive to solve. In the case where the lag is
only first oﬁ_m_,." m = 1, the first and second-arder conditions can be solved analytically {see the Appendix

¥Even though GLS and ML are asymptotically equivalent, it is desirable to evaluate the ML solution t¢ to find the asymptatic
standard errurs of the parameter estimates from the information matrix.
9The sample likelihoud for the mudel [33] is simply

£t n 8 = (07 F G e [ 1@ () o

from which the lug-likelihood follows.
0The choice of method depends, clearly, on the costs of inverting V. Using the eigenvalues P and eigenvectors Q of V implies

“that W = PQ~%5P’ and therefore W'W = V—!. The Cholesky factorisation applies te V=1 rather than V, but yields an upper

triangular W matrix so |[W/| in [16] simplifies to II; i=jfij, the product of the elements along the main diagenal of W.




for details). We opted, however, for a direct-search method based on the algorithm of Dennis and Forczon
[1981]; see also Higham [1993] for a discussion!l. The GLS solution provided a starting point for the maxirurg-
likelilood estimation. A somewhat similar procedure was proposed by Magnus 11978, pp. 289], to maximise a
regression model by maximum likelihood when the disturbance covariance matrix depends on an unknown set of
parameters.'® Once the algorithm converges, we can, if 7 = 1 evaluate the Hessian matrix, and the associated
standard errors, using their analytic derivation. This provides a useful check in our subsequent simulations.

Clearly from equation [33], the #s are linear in the components of ce. The implication is that we can restrict
the parameter search to the « only, resulting in a significant gain in computation speed. Estimates of 3 are
obtained by application of generalised least-squares to [33] once the o is concentrated out.

If we only consider a single lag in the interpoland, by differentiating the log-iikelibood [16] with respect to
the vector 5 for a fixed & we obtain the familiar result

Bi = [X{V(&) X XV (E,) & Ly, . an

for an estimator & of & in iteration r. On each step of the optimisation algorithm, given &), the mairices Sp,
and V are calowlated, and by application of [17] we recover the remaining parameters. Omce the algorithm
converges, a matrix V has been found which is consistent with the ldg structure estimated by MLE, so the
Bunecy vector estimased by [17] is consistent with Fmz)-

6 = Reconciliation of the interpolands

The estimators of the parameters of the monthly regression equation [6] may then be used to produce fitted
values of the interpolands ... These fitted values, however, need to be reconciled with the ohserved quarterly
data y. Our estimate of y;,, minimises the sums of squares of the residuals in the regression equation [B] subject
to the constraint that the interpolated monthly values in each quarter sum to the knovm quarterly totals, that
is, Mw"~ Y = Y-

For simplicity, we confine attention to the first order case, and thus set m = 1. We assume that observations
are available on the quarterly totals g, for quarters ¢ = 1, ..., T. Therefore, we can rewrite [6] as

P
Flyew) = 04 flyen—s) + B0+ 3 BilL)Tigu + e (18)
im1
where, for the first quarter, ¢ = 1, u = 2,3 zod, for the remainder, u = 1,23, t = 2,...,T. A set of consistent
8 and § estimates (at least asymptotically) is cbtained from the cuarterly regression [12]. The problem then
reduces to optimising the Lagrangian

3 T 3 T 3
DAY R A A v —we | . (19)
u=2 E=1 u=1 .

=2 u=1

where }; is the Lagrange multiplier associated with the constraint MwnH Ysu =, £ = 1,..., - The first-order
conditions are given by
Vi(yu (o ~ @1Vius) + A =10, (20)

UThe choice of method was driven by its eage of implementation and good performance, in terms of numerical stability and
convergence. T

2Recall that derivative-free methods have, in general, slower convergence rates than algorithms where gradient information is
used. Magrms [1978, op. cit, footnute 5] suggests that the inversion of the Hessian matrix implied by log-likelihoods like [16] may
be computaticnally expensive, to the point where the speed benefits from gradient-based algorithms are lost. This provedfto be

2lso our case. An iterative approach is alsc suggested in Oberhofer and Krmenta [1974].

where o1 =0, vpyy3 =0, u=1,2,3,¢t =1, T, and V is the derivative operator.

Equation (20) can be solved jointly with the adding-up constraints, MMHH e = U, t=1,.... 7T, to produce
estimates of the interpolands fyp, u = 1,2,3, ¢ = 1, ..., T, and the Lagrange multipliers, };, t = 1,...,T. The
sclution is inherently nonlinear because the derivatives ¥ {.) in (20) are a function of the estimated interpolated
data §pq, v = 1,2,3, £ = 1,..,T, whick, in principle, necessitates the use of iterative methods. -However,
when the transformation f{.) is logarithmic, our experience indicates that the derivatives ¥ F(.) in [20] may be
satisfactorily evaluated at the monthly average 7, of the corresponding quarterly total 3, hence avoiding further
iteration.

6.1 Solution method

To solve [20], define n = 3T It is convenient ta stack (18) in vector and matrix form as
Afi(yD) + Asfa(y}) = XB + v

where A1 is a {n — 1,3) matrix with elements AL = —t, i=7, a1 =1, § =1+ 1 and ay,5; = 0 otherwise,
Az a (n— 1,7 — 3) matrix with G = —@, 1= j+3 a5 =1, i =7+2 and a2: = 0 otherwise,
f0y1) = (Flnad o Fane)Y, BOE) = (Flyaa), o FETa))s 71 = v, 7Y, ¥E = (Y21, yraY, X the
n—11+ wﬂ (¢; + 1)) observation matrix on the constant term and the exogenous indicator variables Hm..n
with the (14 Mwuwg. + 1)) parameter vector 3 defined appropriately and v = (v1,2,..,vr3)’. Note that both
A; and A; are full column rank. Therefore, the first order conditions of 120] become

Fi{y} AV + Ol = 0, Fa(y} )ALy + Chde= 0 {21)

where F1(¥?) and Faly%) are (3,3) and {n — 3,n — 3) diagonal matrices with elements Vi), u=123,
and Vi(p.), v = 1,2,3, ¢ = 2,...,T, respectively, C, = (1,1,1), G = (Iy—; ®(1,1,1)) are the respective
aggregator matrices and Az = (Mg, ..., Ar).

Solving for A; and A in (1) gives

M= —{(GORGIT GO Ry ALY, A = (G5 C) G L Fa(yh) ALy
where ; , = F; QURPEJQ? i =1,2. Hence, the first order conditions {21] are rendered as
(- CHCOC) T iy ALev = 0,6 = 1,2 (22)

where Iy and Io are (3,3) and (» — 3, n — 3) identity matrices Tespectively.

As noted before, {22] is nonlinear and must be solved by iterative methods. An appropriate value to initiate
the search for the solution Yiu to [29] is given by @m.e = ¥ the monthly average for quarter ¢, u = 1,2,3,
t=1,.,T. Let uﬁo and %m.‘o denote the respective vectors of monthly averages of the quarterly data for
quarters ¢ =1 and = 2,....T. First-order Taylor series expansions of £ (y%} and f(v3) about ¥4, and yh,
are given by

£{y) = £(yh) + Filylo) vl — ¥l i=1,2 (23)

Initialising the former of the revised first-order conditions [22) at ybg and ¥i o vields
? - OﬁQEHOULQSﬁ& Fily{a)A}

x (A1 {(f (rio)+ M.HQM,_&QM_ —yEal) + Agfy(yh) — XB) =0, (24)




where 0, = Fi(y} o)A A1Fi(y],). Hence, from [24], defining vo = A,f (¥} o) + Agfalyly) — XB, the
solution for ¥ is

vt -vhe = (00 - alci@nizicn et iyl Afve. (25)
A similar initialisation of the second of the revised first order conditions [22] yields the solution for % as
¥h = ¥ho = (953 - 0571005105 Cy085 ) Falvho)Abva, (26)

where £2), = F Qw_avbwb.um‘MQM.cu. Equations [25] and [26] may then be re-initialised using the solutions
¥¥ and y* and iterated until convergence; that is, until the right hand sides of [25] and [26] are less than the
desired degree of accuracy.

An alternative iterative scheme based on [22] may be obtained by substitution of both approximations for
f,(yF), i = 1,2, given in [23] into v. Defining P; = I; — Ouﬁﬂmbm\..ﬂOUl# Oﬂ.m.wm*wn i=1,2, P¥ as P, evaluated at
20,.4=1,2, and using the adding-up conditions Ciyt =y, 1=1,2 yields

3

kR
a7, PIF:(y] o)A AsFa(ys,) \ [ vt — vl \ _ [ POFa(y! AL

. Y0, AM.J
PYF2{y} )AL A Fo (¥ ) 0, ¥h - vk, PIF2(v} o} A}

which may be iterated in a similar manner.

At the same time as interpolating the data, we are able to produce estimates of approximate expressions
for the variances and covariances of the estimated interpolands §; ... Including only terms of order Op(l1), the
source of error due to the estimation of the regression parameters is asymptotically irrelevant. Hence, only the
random component represented by the error terms v, is pertinent, Details of the requisite calculations are
provided in the following section.

7 The Variance of the interpolands

It is clear from [27] that the estimators §2 for the interpolands ¥k, i =1,92, satisfy the orthogonality conditions

-1

L9 PiF1(37)AL AaFa(35) BiFiGDAL Yo _ _
. et h N . “hiz, | V=0, (28)
PoFa(5)A5A:F1 (37} Qo p PoFa(5,)A%

where we now explicitly show the estimator A; for the matrix A p...mu..... = m,ﬂ.@wfwm.w_.m_,.@w ), P is P; evaluated
st fhn,i=1,2, a0d ¥ = AF(9") - XB, & = (&, &3}, £(5%) = (h(9F), R(4)), §* = (3, 9Y, with 3 the
estimator for 3.

In order to derive an expression for the variance of the interpolands, we make use of a number of approx-
mations. Firstly, .

V= A (fy") + FENE - v) - XB,

where F(§*) = ding(F:1(7%), F2(75)), fr%) = (Ri(y}), G(yh)Y and y* = (y¥,y&). Secondly, from the
orthogonality conditions [28]

h ok [+ 799 B1Fa (37 1AL A Fa(55)

-1
- h, -

N NS a PF(y JA'Y, (28)

BuFy (95 ALAF, (3 Iz ¢

where P = diag(Py, Py) and "
¥=Afy") - XB

10

=v+ Q.T?._.I:wu
noting that n/3(dy s ~ ar) = Op(1), k= 1,2, and n'/2(8 — 8) = Op(1). Therefore, from [29]

i, PaF1 (3 A AaFa(3])

-1
. P

P BFEMA'.

B,Fy 5D ALA L (5) o )

Consequently, an approximate expression for the variance of $* is given by
SIKPF(y" ) A'AF(y"PK’, (30)

where A = (A1, Ao}, F{y*) = dieg(F1(y}), Faly})), P = diag(P1, Py) and

-1

Qs P1F1{y})A} AsFa(y5)

K=
PoFa(y5)AL APy (vh) 198

Using the approximation F(y™) = F(#*), an estimator for [30] is
S2RPF(") A’ AR PR, (31)
where 42 denotes a consistent estimator for o2 and

&= iy @HMH@*U“.W\HPM@@U
PyFa(9;)A5A,F1(50) S

8 Monte Carlo simulations

In this section, we assess the properties of our interpolation method using an error-correction model (ECM) as the
basis for Monte-Carlo experiments. We look at the interpolation of a quarterly series to yield menthly data, and
consider a situation where there is a frst-order lag. Note the ECM is a simple re-parameterisation of equation
[6]. Suppese the interpoland y: = (g1, ..., ;) and the single high-frequency indicator series xp = {11, ..., yo.}’
are co-integrated. We assume the variables are cointegrated in monthly terms, but the identification of the
co-integrating vectors can only be made at a quarterly level, between the y; series and quarterly aggregates of
the monthly indicators, x; = Cxs. The underlying model is

Df(wea) = Bo + Dzeufh — 0L{f () — 2e06) + v4e (32)

where v, ~ IN{0,¢2), I denotes the difference operator, Dy, = Tty — Tepu—1y, and L the lag operator,
Lxpy, = Zyg,_), with obvious treatment when u = 1.

On the assumption that a single cointegrating parameter § links the monthly data o the quarterly inter-
polands, so f(y1) = 21,6 defines the cointegratirig relationship, we rewrite equation [32] as

%@Ev = h..lw.n.:un« + 80+ DB + hHBL._wm + Veu ﬁwwv

For a given parameterisation of [33] and a series of indicator variables, xy,, we can generate a set of distur-
bances v, to simulate g (the superscript mc indicates the vector is generated by Monte Carlo), and obtain
#"*. The disturbances v;, are drawn from a IN(0, 2} distribution to create a sample large enough to be infor-
mative about the properties of cur interpolation procedure and the behaviour of the relevant statistics, under
model [33].

To resemble closely the conditions faced in practical econometric work, we borrowed the structure from
a previous estimation of a component of the U.K. National Accounts. In each replication we constructed a

11



synthetic series using a single indicator variable, the UK retail sales index!? as explanatory variable, We based
the exercise on a regression designed to interpolate consumption of services using the retail sales index, and

- therefore chose as our parameter values those resulting from such a regression. The sample size covers 82
¢uarters, from July, 1973 to December, 1993, The parameters are shown in Table 1 below.

Component logCServ.—1 log RSales;; Constant Alog RSales;
Label from [33] & B2 B B
parameter value 0.9347 0.0921 0.2783 0.3478

Table 1: Parameters for Monte Carlo simulation

Using the above parameter values and indicator series, the Monte Carlo experiments wete set by simulating
IN(0, s%) random vectors vy to provide the disturbances ve,. The Box-Muller transform was used; see Devroye
{1986] or Press et al. [1992] for further details.’* The simulations are run assuming vgy = 0. Each Monte Carlo
experiment consisted of 500 replications.

In each experiment, the fact that our lag was only first order made it easy to calculate the first and second-
order conditions independently of the optimisation procedure. This gave a check against a numerical evaluation
of the Hessian. It was done once every 50 replications in two ways. First, by perturbing the apalytic first-
order conditions on convergence; secondly, by re-starting the optimisation but using a BFGS slgorithm'®, and
recovering the numerical Hessian. To avoid distortions, the same termination criterion was used for the direct-
search {analytic and perturbation alternatives) and BFGS algorithms.

Table 2 below shows the ML Monte Carlo estimates, their mean bias, the Monte Carlo sampling standard
deviations (MCSD), the estimated standard errors (ESE) and the Monte Carlo standard errors (MCSE) for
each coefficient.1®

The results from our MLE Monte Carlo experiment are satisfactory. Except for the constant, the regression
estimators are close to the ones from Tablel. The ESE and MCSD estimates are close, indicating the conventional
variance formula’? provides a reasonable measure of the true parameter uncertainty, given the model and sample
size. In fact, ESE < MCSD in 3 out of the 4 coefficients (and particularly for &), so our estimation procedure
if anything suggests a slight tendency to underestimate the true parameter uncertainty, as the MCSD is the
correct value of the parameter standard deviation.

13Cude FAAM in the U.K. Central Statistical Office database.
An alternative is to apply the Box-Jenkins [1973] methodology to the pseudo-random vectors generated by standard nau_m_ﬁm_.

alzorithms.
15BFGS stands for the Broyden-Fletcher-Goldfarb-Shanno optimisation procedure. See Gill, Murray and Wright [1982) or F..,RE«

[1995, Af], among uthers, for a description of optimisation methods.
16The terminology follows Hendry [1995]. =
TThat is, V{a, 5;) = s¥(X, V1X,;)~1, with 52 an estimator of o2,
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Component logCServ,—; logRSales,_; Constant A log RSales,_,
Label from [33] @ B Bo &
parameter value 0.9271 0.1014 0.3052 0.3676
MCSD 0.0221 0.0271 0.0804 0779
ESE 0.0184 0.0242 . 0.0790 0.0803
R? 0.9977 -

52 0.0082 i

Chow test A, F{5,74) 0.9922 [0.43] .
Chow test B, F(4,75) 1.2348 [0.30]

Bera-Jarque x%(2) 1.7192 [0.42)

SC, F(1,78) 0.9188 [0.34]

$C, F(4,75) 1.0321 [6.40]

ARCH, 2 (1 0.9947 [0.32]

ARCH, %2 (4) 3.6421 [0.46]

Table 2: Simulation estimates and diagnostics [p-values in brakets] for true e = 0.934 (other paramesers as in
Table 1) using MLE.
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Table 3 below presents the mean bias of the parameter estimators and Bera-Jarque 32(2) statistics for
normality (based on D'Agostine et al., 1990).

Parameter & B Bo B
Mean bias . —0.0076 0.0083 0.0269 0.0198
Bera-Jarque x% (2) 31.202 [0.00] 34.093 [0.00] 28.331 [0.00] 3.334 [0.19]

Table 3: Mean bias and normality tests of estimators in Table 2 L..—
The mean bisses, in twmn, are small as a proportion of the coefficient estimates'® but somewhat large relative w
to the MCSD. Finally , figure [1] presents the histograms (nermalised to have zero mean and unit variance) for —

the four estimates in Table 2.

Cathicient far xit-]1

Lariticient for pit-18
BLE

Toethicient for Oxttl
a5

Figure 1: Histograms and density for the parameter estimators of Table 3.

8 To put the bies (& — &) = —0.0108 inside a 95% confidence interval, we would need M ~ 6200 replications; for M = 5005 the
length of a 95% confidence interval is roughly 0.0382. This means that, even the number of replications is not big, the estinftion
of & is precise encugh.
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As expected, the bias in & and 3 offset each other, so to maintain the long-run cutcome. The negative
skewness in the distribution of & (our parameter of interast) may account in part for the small discrepancy
between the MCSD and ESE. Both values, however, are close enough to indicate that model uncertainty is
indeed correctly captured, as mentioned above. .

Returning to the results in Table 2, we provide several additional diagnostics. The Chow tests A and B are
respectively, a NT-step and parameter stability tests based on Chow [1960]. The SC and ARCH rows tabulate
standard LM-type serial correlation and ARCH tests, respectively. The tests are satisfactory at a 5% level, and
overall the equation is well hehaved.

We conducted two additional experiments, for different o values but the same #'s as in the benchmark
regression. The selected values for o in {33] were 0.8530 and 0.950 (corresponding to quarterly coefficients of
0.614 and 0.8374 respectively), roughly the lower and upper bounds found for & in the regressions for the
cormponents of the UK. National Accounts. Table 4 presents the results for e = 0.850.

Componant log CSerw_; log BSales, , (Constant Alog BSales;
Label from [33] & B B B
parameter value 0.83317 0.1000 0.2986 0.3520
MCSD 0.0420 0.0246 0.0773 0.0791
ESE 0.0459 0.0281 0.0808 0.0800
R? 0.9899

52 0.0082

Chow test A, F(5,74) 0.9433 [0.48]

Chow test B, F(4,75) 1.0972 [0.38]

Bera-Jarque 3 (2) 1.9172 [0.38]

SC, F(1,78) 1.0962 [0.30]

SC, F(4,75) 1.0156 [0.40]

ARCH, x2(1) 0.8824 [0.35)

ARCH, % (4) 3.6373 {0.48)

Table 4: Simulation estimates and diagnostics [p-values in brakets| for true o: = 0.850 (other parameters as in
Table 1} using MLE.

As in the first experiment, the results are satisfactory. There is no serious bias in the coefficient estimates,
and the regression diagnostics show no problems. In Table 5 we report the same statistics as Table 3. Histograms
of the four parameter estimators are plotted in Figure [2].

Parameter & B Fo B
Mean bias —0.0194 0.0074 0.0211 0.0039
Bera-Jarque x(2) 52282 [0.00] 45.463 10.00] 62,113 [0.00] (0-831 [0.66)

Table 5: Mean bias and normality tests of estimators in Table 5
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Component log CServ,_y  log RSales; ; (Constant Alog RSales;

Label from [33] & Az fa A
T parameter value 0.9436 0.0998 0.3036 0.3507
MCSD 0.0168 0.0223 0.081% 0.0789
ESE 0.0151 0.0210 0.0765 0.0792
R? 0.9985
s 0.0083
. Chow test A, F(5,74) 1.0423 [0.40]
Chow test B, F(4,73) L1874 [0.32]
contietant tor wttots . Bera-Jarque 3 (2) 1.7933 [0.41]
24 5C, F(1,78) 1.9025 [0.35]
5C, F(4,75) 1.0702 [0.38]
ARCH, 3% (1) 0.9581 [0.33]
ARCH, 5 (4) 3.8243 [0.43]

Table 6: Simulation estimates and diagnostics [p-values in brakets] for true & = 0.950 (other parameters as in
Table 1} using MLE,

The outcome of experiment for o« = 0.95 was satisfactory as well, as seen by the stagistics in Table 6. In line
with the previous twe experiments, the equation parameters have non-normal distributions, but now with the
exception of the trend term (and, therefore, a MCSD almost identical to the ESE statistic). The histograms
and densities of the model parameters for & = 0.95 are shown in figure [3].

Parameter & B Ba B
Mean hias —0.0069 0.0077 0.0253 0.0030
Bera-Jarque x2(2) 12.013 [0.00] 15010 [0.00] 10.572 [0.01] 0.001 [0.99]

Table 7: Mean bias and normality tests of estimators in Table 7

Figure 2: Histograms and density for the parameter estimators of Table 5.

¥ L3
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8.1 Testing the validity of restrictions due to aggregation

Another relevant issue of this whole exercise concerns the impact of temporal aggregation on the estimation of
the parameters in [33]. We can rewrite [33] as

(1-0%L%) flyn) = (1+al+e6?L?)DXnf—oa{l+al + L% LXnb+
+ T. + L + Quhuv o

obtaining, after some simplification,
%Q.n:v = Guhu%mﬁn:w + .Uv»memum + H\.Uumwﬂﬁw + hwbumn:mwA + H.vnqﬂwcuw + A‘._. +eal+ thwu Ut ﬁwhu

Note equation [34] is the unrestricted version of (33]. There are two restrictions implicit in [33]. A Lagrange

. multiplier test of the form
Coetfizient for git= 11 Eretfitient for xit-11 frr—1 1 S N
: VX (X VX)) T XVl (35)

BEE
can be carried out, distributed in our case as x? (2);'° see, for example, Davidson and MacKinnon [1993, ch. 3]
or Godfrey {1988] for a thorough discussion. The LM test statistic [35] should provide a clear indication if the
restrictions imposed to estimate [33] are valid, and therefore it may be regarded as a misspecification test for
[33]. Table 8 summarizes the results for the three experiments conducted. In every case, the empirical size of
the LM test comfortably falls into the x2 (2) critical region, at the selected fractiles.??

o5 4

32 (2) fractile Q.90 095 099

Coefri<lent for Ondt) O—Pﬂnoﬁomw
21 o = 0.935 {base case) 0.098 0.044 0.001
a = 0.850 0.084 0.044 0.000
a = 0.850 0.100 09046 0.004

Table 8: Empirical size of LM test, for the 0.90, 0.95 and 0.99 fractiles of the x? (2) distribution, 500 replications

8.2 Standard errors of the interpolands

In section 7 we showed how to estimate standard errors of the interpolands. The Monte Carlo standard errors
can be compared with the actual standard errors across the different replications, in order to assess how good
the theoretical calculations are as an indicator of the true accuracy of the interpolated data.

The following tables presents the interpoland standard errors for the middle and end-sarple quarters derived
from the replications and then calculated theoretically, with the rows indicating the standard error for the first,
second and third month of each quarter. These are shown as proportions of the interpolated data.

Figure 3: Histograms and density for the parameter estimators of Table T.

i~ 19%We have five unrestricted regressors, 1 to 5 and three restricted parameters, o, 8; and 6. Note in [17] we are always working
W3 “under Hy, so there is no need to estimate [16]; the covariance and srror vectors are those obtained from the MLE of [33].
20And marginally so for a = 0.95 at a 10% significance.
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Mid-sample End-sample
a = 0.830 a=093 a=00850|«=0.850 a=0935 «=0950
1 0.5367 0.5065 G.5044 0.56056 0.5414 0.5658
2 0.4003 0.3896 .4000 0.4116 0.3984 0.4107
3 0.5511 0.5056 0.4850 (.5890 0.5682 0.5481

Table 9: Monte Carlo interpoland standard errors for middle and end-sample quarters

Mid-sample End-sample
¢ = 0.850 a=0935 o«=0950{ a=0.850 o=0835 o=0950
1 0.5270 0.5049 0.4871 0.5510 0.5224 0.5375
2|, 0.4002 0.3618 0.3628 0.3918 0.3920 0.3911
3 0.5216 0.5058 0.4575 0.5700 0.5510 0.5009

Table 10: Asymptotic interpoland standard errors for middle and end-sample quarters

Orverall, the second moments both for the middle and end-sample quarters are low, there seems to be no
significant end-of-sample problems, and the Monte Carlo values are quite close to the asymptotic ones, The
off-diagonal elements in the ertor covariance matrix decay rapidly to zero.

We have also computed the Bera-Jarque statistic {using the same procedure as in tables 3, 5 and 7) for the
interpolated values, finding in all cases that normality cannot be rejected.

Mid-sample End-sample
a=0.850 a=0835 «a=0900{ a=0385 a=0935 a=0950

1] 231032 196[037 2.1210.35] | 011 [0.95] 0.36 [0.84]
2| 197037 236(0.28) 2.71(0.26] | 1.38 [0.50] 1.32 [0.52]
3| 147 048] 131[0.52) 1.69 [0.43) | 261 [0.27) 0.58 [0.75]

Table 11: Normality tests for interpolated data [P-values in brackets]

In addition, to compare the distributions of the outcomes against the true values we present a graphical
approach: figures 4 to 6 present 2-way quantile plots for the quarters of interest. Each plot shows the quantiles
of o (circles) against those of ¥, (solid tine) for month ¢ of quarter u. Given the above statistics, both
distributions should be quite close to the 45° line. Clearly from the graphs, in each of the experiments and
months compared, the distributions of ¥; and y; are, roughly, the same.

%
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Figure 4: 2-way quantile plot, quarters 41 [top row] and 82 [bottom row], for ¢® = 0.935 simulation and 500
replications.
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9 Conclusions

The model-based method of interpolation suggested by Chow and Lin [1971] proves to be readily extendible to
deal with the case where there is a dynamic relationship between the indicator variables and the Interpoland.
‘We have described both Generalized Least Squares and Maximum-Likelihood solution methods. ‘

A Monte-Carlo analysis of a partial adjustment error-correction model suggests that there are no serious
problems arising from biases either in the parameters or in the interpolated data. Very importantly, the
estimated standard errors of both the parameters and the interpolated data seem to be good indicators of the
experimental standard errors. This rueans that the method described here can be nsed both to interpolate data
and to provide an ndicator of the reliability of the resulting interpolands.

A Appendix: Standard errors of Maximum Likelihood Estimators

The estimation of the standard errors involves, as usual, recovering the Hessian matrix of the log-likelihood
equation; .f..[15] or [16]. In our case, the derivation of the Hessian is not straightforward given the dependence
of V on 8, and the inclusion of dynamics.

For ease of exposition. we skip some of the intermediate steps in the derivation of the Hessian matrix. We
avoided vectorizing fo keep notation understandable, however at the expense of some loss of simplicity in several
elements of the Hessian. Vectors are presented in [bold] lower case and matrices in [bold] upper case; non-bold
typefaces refer to scalars.

We define the following auxiliary vectors and matrices, where the notation should be evident from the main
text.:

1. X1 = CH.X,

2. X3 = C(88,/00)X,

3. Fi = [Ly Xy@3e2 8

4. Fy = [Ly 2CX,)6a )

5 H = V- {§V/ga)V?

6. K1 = v-lg

7. Ko = VP +He

8. P = KiF;+05K{(6V/0a)K;

The second-order conditions of the log-likelihcod [16], with respect to o and 3, are

2 11, 3V av 1 3 Y
Pu = abPig Tﬁm&amiﬁﬂ@- s~ Fjl | + e (- V) B
2 1 '
Dy = a%mﬁpﬁ.ﬁm T@NH —X{VIF - N_H<|HWMN~_
2 ' 2 1 rxr—1
Dy = mNHNHNHMHIHN_d‘ <]
and the Hessian matrix is simply
Dy Dy
1
H(a,8)=—
() 52 | Dy Dy
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where s? is the MLE estimator of 62 and Dys = Dj,; H{w, 8) should be negative definite at the maximum value
of the likelihood. Therefore, Var(a, §) = —H(a, 8) " is the asymptotic variance of the maxirum likelihood
estimates.
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