Mortgages and Monetary Policy

Carlos Garriga Finn Kydland Roman Šustek
St Louis Fed UC Santa Barbara QMUL \& LSE-CfM

NIESR/ESRC Conference, London

12 September 2014

Motivation and questions

- House is a large long-term real asset; mortgage is a large long-term nominal liability
- Nominal payments for $20-30$ yrs; $15-22 \%$ of net income (US, UK), 29% (GER, FRA)
- Mortgage debt: $30-110 \%$ of annual GDP (developed countries, 2009)
- Nominal frictions usually lead to real effects of monetary policy
- What are the real effects in the presence of mortgages? Who gains, who looses? ARM vs FRM?

Methodology and preview of findings

- Model: homeowners (3rd \& 4th quintile of wealth dist.); capital owners (5th quintile); incomplete markets; Taylor rule; absence of standard nom. frictions
- Monetary policy affects real mortgage payments
- Two channels: price effect (new debt), wealth effects (old debt)
- The two effects reinforce each other under ARM, offset each other under FRM \rightarrow mon. policy has stronger effects under ARM
- More persistent changes in monetary policy have larger impact
- Upper bounds due to no refinancing, no choice b/w ARM and FRM

Outline of the talk

(1) Numerical examples of the price effect in "partial equilibrium"
(2) An explanation
(3) Overview of the model ("general equilibrium")
(4) Some quantitative findings
... much more in the paper!

Mon. policy and real mortgage payments over the life of a new mortgage loan

Constant short-term interest rate

Debt-servicing costs

Constant real interest rate $r=1 \%$; constant real income w
Mortgage (30 yrs) $=4 x$ annual income
Debt servicing costs $=\widetilde{m}_{t} / w$

Mean-reverting decline in the short rate

Debt-servicing costs

Concave utility $\mathrm{fn} \Rightarrow$ you prefer payments under easing

Mean-reverting decline in the short rate

Debt-servicing costs

Even better if contracts are ARM

Hump-shaped decline in the short rate

Monetary policy

Debt-servicing costs

Effect not always bigger under ARM!

Highly persistent mean-reverting decline

Debt-servicing costs

Effect gets bigger with persistence; FRM gets closer to ARM

Price and wealth effects

2-period mortgage

$$
t=1,2,3
$$

$$
\frac{l}{p_{1}}=\theta h, \quad m_{2}=\left(i_{2}^{M}+\gamma\right) /, \quad m_{3}=\left(i_{3}^{M}+1\right)(1-\gamma) /
$$

Fully-amortizing mortgage: $\quad i_{2}^{M}+\gamma=\left(i_{2}^{M}+1\right)(1-\gamma)$

No arbitrage pricing of mortgages

ARM: $i_{2}^{M}=i_{1}, \quad i_{3}^{M}=i_{2}$

No arbitrage pricing of mortgages

ARM: $\quad i_{2}^{M}=i_{1}, \quad i_{3}^{M}=i_{2}$

FRM: $\quad i_{2}^{M}=i_{3}^{M}=i^{F}$

$$
\begin{gathered}
1=Q_{1}^{(1)}\left(i^{F}+\gamma\right)+Q_{1}^{(2)}(1-\gamma)\left(i^{F}+1\right) \\
Q_{1}^{(1)}=\left(1+i_{1}\right)^{-1} \\
Q_{1}^{(2)}=\left[\left(1+i_{1}\right)\left(1+i_{2}\right)\right]^{-1}
\end{gathered}
$$

No arbitrage pricing of mortgages

ARM: $\quad i_{2}^{M}=i_{1}, \quad i_{3}^{M}=i_{2}$

FRM: $\quad i_{2}^{M}=i_{3}^{M}=i^{F}$

$$
\begin{gathered}
1=Q_{1}^{(1)}\left(i^{F}+\gamma\right)+Q_{1}^{(2)}(1-\gamma)\left(i^{F}+1\right) \\
Q_{1}^{(1)}=\left(1+i_{1}\right)^{-1} \\
Q_{1}^{(2)}=\left[\left(1+i_{1}\right)\left(1+i_{2}\right)\right]^{-1}
\end{gathered}
$$

Fisher: $\quad\left(1+i_{t}\right)\left(1+\pi_{t+1}\right)^{-1}=(1+r)=\left(\mu^{*}\right)^{-1}$

Price effect (new debt)

Cost of a new mortgage to the household

$$
\begin{aligned}
\tau_{H}^{F R M} & =-\theta\left\{1-\left[\mu_{12} \frac{i^{F}+\gamma}{1+\pi_{2}}+\mu_{12} \mu_{23} \frac{\left(i^{F}+1\right)(1-\gamma)}{\left(1+\pi_{2}\right)\left(1+\pi_{3}\right)}\right]\right\} \\
\tau_{H}^{A R M} & =-\theta\left\{1-\left[\mu_{12} \frac{i_{1}+\gamma}{1+\pi_{2}}+\mu_{12} \mu_{23} \frac{\left(i_{2}+1\right)(1-\gamma)}{\left(1+\pi_{2}\right)\left(1+\pi_{3}\right)}\right]\right\}
\end{aligned}
$$

Price effect (new debt)

Cost of a new mortgage to the household

$$
\begin{aligned}
\tau_{H}^{F R M} & =-\theta\left\{1-\left[\mu_{12} \frac{i^{F}+\gamma}{1+\pi_{2}}+\mu_{12} \mu_{23} \frac{\left(i^{F}+1\right)(1-\gamma)}{\left(1+\pi_{2}\right)\left(1+\pi_{3}\right)}\right]\right\} \\
\tau_{H}^{A R M} & =-\theta\left\{1-\left[\mu_{12} \frac{i_{1}+\gamma}{1+\pi_{2}}+\mu_{12} \mu_{23} \frac{\left(i_{2}+1\right)(1-\gamma)}{\left(1+\pi_{2}\right)\left(1+\pi_{3}\right)}\right]\right\}
\end{aligned}
$$

Notice: $i_{1} \uparrow \Rightarrow$ marginal mortg. payments in $t=2 \uparrow \Rightarrow \tau_{H} \uparrow$

Price effect (new debt)

Cost of a new mortgage to the household

$$
\begin{aligned}
\tau_{H}^{F R M} & =-\theta\left\{1-\left[\mu_{12} \frac{i^{F}+\gamma}{1+\pi_{2}}+\mu_{12} \mu_{23} \frac{\left(i^{F}+1\right)(1-\gamma)}{\left(1+\pi_{2}\right)\left(1+\pi_{3}\right)}\right]\right\} \\
\tau_{H}^{A R M} & =-\theta\left\{1-\left[\mu_{12} \frac{i_{1}+\gamma}{1+\pi_{2}}+\mu_{12} \mu_{23} \frac{\left(i_{2}+1\right)(1-\gamma)}{\left(1+\pi_{2}\right)\left(1+\pi_{3}\right)}\right]\right\}
\end{aligned}
$$

No real effects if:
(i) $\theta=0$
(ii) $\mu_{t, t+1}=\mu^{*}$
(iii) $\gamma=1$
(iv) indexation

Wealth effects (outstanding debt)

- $t=1$:

$$
\widetilde{m}_{1}=\frac{\left(i_{1}^{M}+\gamma_{1}\right) \widetilde{l}_{0}}{\left(1+\pi_{1}\right)} \quad i_{1}^{M} \quad \text { determined in } t=0
$$

- $t=2$

FRM: $\quad \widetilde{m}_{2}=\frac{\left(i_{0}^{F}+\gamma_{2}\right)}{\left(1+\pi_{2}\right)\left(1+\pi_{1}\right)}\left(1-\gamma_{1}\right) \widetilde{I}_{0}$

Wealth effects (outstanding debt)

- $t=1$:

$$
\widetilde{m}_{1}=\frac{\left(i_{1}^{M}+\gamma_{1}\right)}{\left(1+\pi_{1}\right)} \widetilde{l}_{0} \quad i_{1}^{M} \quad \text { determined in } t=0
$$

- $t=2$

FRM: $\quad \widetilde{m}_{2}=\frac{\left(i_{0}^{F}+\gamma_{2}\right)}{\left(1+\pi_{2}\right)\left(1+\pi_{1}\right)}\left(1-\gamma_{1}\right) \widetilde{I}_{0}$

ARM: $\quad \tilde{m}_{2}=\frac{\left(i_{1}+\gamma_{2}\right)}{\left(1+\pi_{2}\right)\left(1+\pi_{1}\right)}\left(1-\gamma_{1}\right) \widetilde{I}_{0}$

Wealth effects (outstanding debt)

- $t=1$:

$$
\widetilde{m}_{1}=\frac{\left(i_{1}^{M}+\gamma_{1}\right)}{\left(1+\pi_{1}\right)} \widetilde{l}_{0} \quad i_{1}^{M} \quad \text { determined in } t=0
$$

- $t=2$

FRM: $\quad \widetilde{m}_{2}=\frac{\left(i_{0}^{F}+\gamma_{2}\right)}{\left(1+\pi_{2}\right)\left(1+\pi_{1}\right)}\left(1-\gamma_{1}\right) \widetilde{/}_{0}$

ARM: $\quad \tilde{m}_{2}=\frac{\left(i_{1}+\gamma_{2}\right)}{\left(1+\pi_{2}\right)\left(1+\pi_{1}\right)}\left(1-\gamma_{1}\right) \widetilde{I}_{0}$

Notice: $\quad i_{1} \uparrow \Rightarrow \widetilde{m}_{2} \downarrow$ under FRM, $\quad \widetilde{m}_{2} \uparrow$ under ARM

Quantitative model

Main features

- Infinite horizon
- Multi-period mortgages (≈ 30 yrs)
- General equilibrium (r, w, i endogenous)
- capital owner
- competitive factor markets, elastic labor supply
- Taylor rule
- Calibrated to the US (long-run averages)

Environment

- Competitive producers: $A_{t} f\left(K_{t}, N_{t}\right)=\zeta\left(C_{t}, X_{K t}, X_{S t}\right)$
- Competitive homebuilders: $X_{L t}=1 ; g\left(X_{S t}, X_{L t}\right)=X_{H t}$
- Two agent types: homeowners and capital owners; log preferences, same β, measures $2 / 3$ and $1 / 3$; repre. agent of each type; interact in factor, mortgage, unsecured loan markets
- Taylor rule
- Either FRM or ARM
- No financial intermediaries

Monetary policy shocks as a 'level' factor

Monetary policy shocks as a 'level' factor

Taylor rule: $\quad i_{t}=\left(i-\bar{\pi}+\bar{\pi}_{t}\right)+\nu_{\pi}\left(\pi_{t}-\bar{\pi}_{t}\right) \quad \nu_{\pi}>1$

$$
\bar{\pi}_{t+1}=\left(1-\rho_{\pi}\right) \bar{\pi}+\rho_{\pi} \bar{\pi}_{t}+\epsilon_{\pi, t+1} \quad \rho_{\pi} \rightarrow 1
$$

+ Fisher eqn $\Rightarrow i_{t} \approx \underbrace{\sum_{j=0}^{\infty}\left(\frac{1}{\nu_{\pi}}\right)^{j} E_{t} r_{t+1+j}}_{\text {slope factor }}+\underbrace{\bar{\pi}_{t}}_{\text {level factor }}$

$$
\pi_{t} \approx \frac{1}{\nu_{\pi}} \sum_{j=0}^{\infty}\left(\frac{1}{\nu_{\pi}}\right)^{j} E_{t} r_{t+1+j}+\bar{\pi}_{t}
$$

where $\quad r_{t}=M P K$

Selected findings

Responses to 1 percentage point (annual) increase in $\bar{\pi}_{t}$

Effects larger under ARM than FRM

Effects larger when the shock is more persistent

$$
\rho_{\pi}=0.994
$$

$$
\rho_{\pi}=0.95
$$

$$
\rho_{\pi}=0.75
$$

Concluding remarks

- Policy implications
- Real effects of monetary policy larger in ARM countries (UK) than FRM countries (US)
- Persistence matters: keeping low longer has bigger impact
- Some open issues
- Housing construction or house prices?
- Can monetary policy substitute for an "optimal debt contract"?
... what should optimal mon. policy be in the Eurozone?

Calibration

Symbol	Model	Data	Description
Targeted in calibration:			
K	7.06	7.06	Capital stock
H	5.28	5.28	Housing stock
X_{K}	0.156	0.156	Capital investment
X_{S}	0.054	0.054	Housing structures
N	0.255	0.255	Hours worked
$\widetilde{m} /(w n-\tau)$	0.185	0.185	Debt-servicing costs (pre-tax)
i^{M}	0.0233	0.0233	Mortgage rate
Not targeted:			
Aggregate mortgage variables			
\widetilde{D}	1.61	2.35	Mortgage debt
γ	0.0144	0.0118	Amortization rate
Capital owner's variables			
$\left(1-\tau_{K}\right)\left(r-\delta_{K}\right)$	0.012	0.013	Net rate of return on capital
$\left[(r-\delta) k+\widetilde{m}^{*}\right] /\left[(r-\delta) k+\widetilde{m}^{*}+\tau^{*}\right]$	0.31	0.39	Income from assets to total income
$\widetilde{m} /\left[\left(1-\tau_{K}\right)(r-\delta) k+\widetilde{m}^{*}+\tau^{*}\right]$	0.089	$\mathrm{~N} / \mathrm{A}$	Mortg. payments to total (net) income
Homeowner's variables			
τ_{H}		$\mathrm{~N} / \mathrm{A}$	Housing wedge
$\widetilde{m} /\left[\left(1-\tau_{N}\right)(w n-\tau)\right]$	0	$\mathrm{~N} / \mathrm{A}$	Debt-servicing costs (post-tax)
$(w n-\tau) /(w n-\tau)$	0.24		
Distribution of wealth	1.00	0.81	Income from labor to total income
$(K+\widetilde{D}) /(K+H)$			
$(H-\widetilde{D}) /(K+H)$	0.71	0.82	Capital owners

Back

Calibration

Symbol	Model	Data	Description
Targeted in calibration:			
K	7.06	7.06	Capital stock
H	5.28	5.28	Housing stock
X_{K}	0.156	0.156	Capital investment
X_{S}	0.054	0.054	Housing structures
N	0.255	0.255	Hours worked
$\widetilde{m} /(w n-\tau)$	0.185	0.185	Debt-servicing costs (pre-tax)
i^{M}	0.0233	0.0233	Mortgage rate
Not targeted:			
Aggregate mortgage variables			
\widetilde{D}	1.61	2.35	Mortgage debt
γ	0.0144	0.0118	Amortization rate
Capital owner's variables			
$\left(1-\tau_{K}\right)\left(r-\delta_{K}\right)$	0.012	0.013	Net rate of return on capital
$\left[(r-\delta) k+\widetilde{m}^{*}\right] /\left[(r-\delta) k+\widetilde{m}^{*}+\tau^{*}\right]$	0.31	0.39	Income from assets to total income
$\widetilde{m} /\left[\left(1-\tau_{K}\right)(r-\delta) k+\widetilde{m}^{*}+\tau^{*}\right]$	0.089	$\mathrm{~N} / \mathrm{A}$	Mortg. payments to total (net) income
Homeowner's variables			
τ_{H}		$\mathrm{~N} / \mathrm{A}$	Housing wedge
$\widetilde{m} /\left[\left(1-\tau_{N}\right)(w n-\tau)\right]$	0	$\mathrm{~N} / \mathrm{A}$	Debt-servicing costs (post-tax)
$(w n-\tau) /(w n-\tau)$	0.24		
Distribution of wealth	1.00	0.81	Income from labor to total income
$(K+\widetilde{D}) /(K+H)$			
$(H-\widetilde{D}) /(K+H)$	0.71	0.82	Capital owners

Back

Cyclical properties

	US data	Model	
		FRM	ARM
Std Y	Std		1.04
Rel. std			
Y	1.00	1.00	1.00
C	0.42	0.42	0.35
χ_{S}	6.94	9.48	8.20
X_{K}	2.45	1.76	3.01
N	0.92	0.24	0.30
π	0.58	0.85	0.81
i	0.58	0.85	0.85
i^{F}	0.35	0.77	N/A
$i^{F}-i$	0.42	0.21	N/A
q	0.58	0.18	0.15
p_{H}	1.57	1.13	0.97
Corr			
$\left(C_{t}, Y_{t}\right)$	0.79	0.88	0.94
$\left(X_{S t}, Y_{t}\right)$	0.60	0.99	0.85
$\left(X_{K t}, Y_{t}\right)$	0.73	0.92	0.83
$\left(N_{t}, Y_{t}\right)$	0.84	-0.67	-0.05
$\left(\pi_{t}, Y_{t}\right)$	0.14	0.23	0.41
$\left(i_{t}, Y_{t}\right)$	0.36	0.32	0.48
$\left(i_{t}, Y_{t}\right)$	0.01	0.09	N/A
$\left(i_{t}^{F}-i_{t}, Y_{t}\right)$	-0.49	-0.98	N/A
$\left(q_{t}, Y_{t}\right)$	0.41	0.99	0.85
$\left(p_{H t}, Y_{t}\right)$	0.55	0.99	0.85

1% increase in A_{t}, tight vs loose policy

FRM

ARM

Equilibrium adjustments to A_{t} shock

Responses to $A \quad\left(X_{H}\right.$ and N const.)

Responses to i_{t}
Housing investment $\left(X_{H}\right)$

Responses to $X_{H} \quad(A$ and N constant)

Housing investment when homeowners can access bonds

