### Mortgages and Monetary Policy

Carlos Garriga Finn Kydland Roman Šustek

St Louis Fed UC Santa Barbara QMUL & LSE-CfM

NIESR/ESRC Conference, London 12 September 2014

- House is a large long-term *real* asset; mortgage is a large long-term *nominal* liability
  - Nominal payments for 20 30 yrs; 15 22% of net income (US, UK), 29% (GER, FRA)
  - Mortgage debt: 30-110% of annual GDP (developed countries, 2009)
- Nominal frictions usually lead to real effects of monetary policy
- What are the real effects in the presence of mortgages? Who gains, who looses? ARM vs FRM?

# Methodology and preview of findings

- Model: homeowners (3rd & 4th quintile of wealth dist.); capital owners (5th quintile); incomplete markets; Taylor rule; absence of standard nom. frictions
  - Monetary policy affects real mortgage payments
  - Two channels: price effect (new debt), wealth effects (old debt)
- The two effects reinforce each other under ARM, offset each other under FRM  $\rightarrow$  mon. policy has stronger effects under ARM
- More persistent changes in monetary policy have larger impact
- Upper bounds due to no refinancing, no choice b/w ARM and FRM

(1) Numerical examples of the price effect in "partial equilibrium"

- (2) An explanation
- (3) Overview of the model ("general equilibrium")
- (4) Some quantitative findings

... much more in the paper!

Mon. policy and real mortgage payments over the life of a new mortgage loan

#### Constant short-term interest rate



Constant real interest rate r = 1%; constant real income w

Mortgage (30 yrs) = 4x annual income Debt servicing costs =  $\tilde{m}_t/w$ 

#### Mean-reverting decline in the short rate



Concave utility fn  $\Rightarrow$  you prefer payments under easing

#### Mean-reverting decline in the short rate



Even better if contracts are ARM

### Hump-shaped decline in the short rate



Effect not always bigger under ARM!

### Highly persistent mean-reverting decline



Effect gets bigger with persistence; FRM gets closer to ARM

## Price and wealth effects

t = 1, 2, 3

$$\frac{1}{p_1} = \theta h, \qquad m_2 = (i_2^M + \gamma)I, \qquad m_3 = (i_3^M + 1)(1 - \gamma)I$$

Fully-amortizing mortgage:  $i_2^M + \gamma = (i_2^M + 1)(1 - \gamma)$ 

ARM: 
$$i_2^M = i_1$$
,  $i_3^M = i_2$ 

No arbitrage pricing of mortgages

ARM: 
$$i_2^M = i_1$$
,  $i_3^M = i_2$ 

FRM: 
$$i_2^M = i_3^M = i^F$$

$$1 = Q_1^{(1)}(i^F + \gamma) + Q_1^{(2)}(1 - \gamma)(i^F + 1)$$
$$Q_1^{(1)} = (1 + i_1)^{-1}$$
$$Q_1^{(2)} = [(1 + i_1)(1 + i_2)]^{-1}$$

No arbitrage pricing of mortgages

ARM: 
$$i_2^M = i_1$$
,  $i_3^M = i_2$ 

FRM: 
$$i_2^M = i_3^M = i^F$$

$$1 = Q_1^{(1)}(i^F + \gamma) + Q_1^{(2)}(1 - \gamma)(i^F + 1)$$
$$Q_1^{(1)} = (1 + i_1)^{-1}$$
$$Q_1^{(2)} = [(1 + i_1)(1 + i_2)]^{-1}$$

Fisher:  $(1+i_t)(1+\pi_{t+1})^{-1} = (1+r) = (\mu^*)^{-1}$ 

Cost of a new mortgage to the household

$$\tau_{H}^{FRM} = -\theta \left\{ 1 - \left[ \mu_{12} \frac{i^{F} + \gamma}{1 + \pi_{2}} + \mu_{12} \mu_{23} \frac{(i^{F} + 1)(1 - \gamma)}{(1 + \pi_{2})(1 + \pi_{3})} \right] \right\}$$

$$\tau_{H}^{ARM} = -\theta \left\{ 1 - \left[ \mu_{12} \frac{\dot{i}_{1} + \gamma}{1 + \pi_{2}} + \mu_{12} \mu_{23} \frac{(\dot{i}_{2} + 1)(1 - \gamma)}{(1 + \pi_{2})(1 + \pi_{3})} \right] \right\}$$

Cost of a new mortgage to the household

$$\tau_{H}^{FRM} = -\theta \left\{ 1 - \left[ \mu_{12} \frac{i^{F} + \gamma}{1 + \pi_{2}} + \mu_{12} \mu_{23} \frac{(i^{F} + 1)(1 - \gamma)}{(1 + \pi_{2})(1 + \pi_{3})} \right] \right\}$$

$$\tau_{H}^{ARM} = -\theta \left\{ 1 - \left[ \mu_{12} \frac{i_1 + \gamma}{1 + \pi_2} + \mu_{12} \mu_{23} \frac{(i_2 + 1)(1 - \gamma)}{(1 + \pi_2)(1 + \pi_3)} \right] \right\}$$

Notice:  $i_1 \uparrow \Rightarrow$  marginal mortg. payments in  $t = 2 \uparrow \Rightarrow \tau_H \uparrow$ 

Cost of a new mortgage to the household

$$\tau_{H}^{FRM} = -\theta \left\{ 1 - \left[ \mu_{12} \frac{i^{F} + \gamma}{1 + \pi_{2}} + \mu_{12} \mu_{23} \frac{(i^{F} + 1)(1 - \gamma)}{(1 + \pi_{2})(1 + \pi_{3})} \right] \right\}$$

$$\tau_{H}^{ARM} = -\theta \left\{ 1 - \left[ \mu_{12} \frac{\dot{i}_{1} + \gamma}{1 + \pi_{2}} + \mu_{12} \mu_{23} \frac{(\dot{i}_{2} + 1)(1 - \gamma)}{(1 + \pi_{2})(1 + \pi_{3})} \right] \right\}$$

No real effects if:

(i) 
$$\theta = 0$$
 (ii)  $\mu_{t,t+1} = \mu^*$  (iii)  $\gamma = 1$  (iv) indexation

## Wealth effects (outstanding debt)

• *t* = 1:

$$\widetilde{m}_1 = rac{(i_1^M + \gamma_1)}{(1 + \pi_1)} \widetilde{l}_0 \qquad i_1^M ext{ determined in } t = 0$$

• *t* = 2

FRM: 
$$\widetilde{m}_2 = \frac{(i_0^F + \gamma_2)}{(1 + \pi_2)(1 + \pi_1)}(1 - \gamma_1)\widetilde{l}_0$$

## Wealth effects (outstanding debt)

• *t* = 1:

$$\widetilde{m}_1 = rac{(i_1^M + \gamma_1)}{(1 + \pi_1)} \widetilde{l}_0 \qquad i_1^M ext{ determined in } t = 0$$

• *t* = 2

FRM: 
$$\widetilde{m}_2 = \frac{(i_0^F + \gamma_2)}{(1 + \pi_2)(1 + \pi_1)}(1 - \gamma_1)\widetilde{l}_0$$

ARM: 
$$\widetilde{m}_2 = rac{(i_1 + \gamma_2)}{(1 + \pi_2)(1 + \pi_1)}(1 - \gamma_1)\widetilde{h}_0$$

## Wealth effects (outstanding debt)

• *t* = 1:

$$\widetilde{m}_1 = rac{(i_1^M + \gamma_1)}{(1 + \pi_1)} \widetilde{l}_0 \qquad i_1^M ext{ determined in } t = 0$$

• *t* = 2

FRM: 
$$\widetilde{m}_2 = \frac{(i_0^F + \gamma_2)}{(1 + \pi_2)(1 + \pi_1)}(1 - \gamma_1)\widetilde{l}_0$$

ARM: 
$$\widetilde{m}_2 = \frac{(i_1 + \gamma_2)}{(1 + \pi_2)(1 + \pi_1)}(1 - \gamma_1)\widetilde{l}_0$$

Notice:  $i_1 \uparrow \Rightarrow \widetilde{m}_2 \downarrow$  under FRM,  $\widetilde{m}_2 \uparrow$  under ARM

## Quantitative model

- Infinite horizon
- Multi-period mortgages (pprox 30 yrs)
- General equilibrium (r, w, i endogenous)
  - capital owner
  - competitive factor markets, elastic labor supply
  - Taylor rule
- Calibrated to the US (long-run averages)

### Environment

- Competitive producers:  $A_t f(K_t, N_t) = \zeta(C_t, X_{Kt}, X_{St})$
- Competitive homebuilders:  $X_{Lt} = 1$ ;  $g(X_{St}, X_{Lt}) = X_{Ht}$
- Two agent types: homeowners and capital owners; log preferences, same β, measures 2/3 and 1/3; repre. agent of each type; interact in factor, mortgage, unsecured loan markets
- Taylor rule
- Either FRM or ARM
- No financial intermediaries

### Monetary policy shocks as a 'level' factor

Taylor rule: 
$$i_t = (i - \overline{\pi} + \overline{\pi}_t) + \nu_{\pi}(\pi_t - \overline{\pi}_t)$$
  $\nu_{\pi} > 1$   
 $\overline{\pi}_{t+1} = (1 - \rho_{\pi})\overline{\pi} + \rho_{\pi}\overline{\pi}_t + \epsilon_{\pi,t+1}$   $\rho_{\pi} \to 1$ 

+ Fisher eqn 
$$\Rightarrow i_t \approx \underbrace{\sum_{j=0}^{\infty} \left(\frac{1}{\nu_{\pi}}\right)^j E_t r_{t+1+j}}_{\text{slope factor}} + \underbrace{\overline{\pi}_t}_{\text{level factor}}$$

$$\pi_t \approx \frac{1}{\nu_{\pi}} \sum_{j=0}^{\infty} \left(\frac{1}{\nu_{\pi}}\right)^j E_t r_{t+1+j} + \overline{\pi}_t$$

where 
$$r_t = MPK$$

### Selected findings

Responses to 1 percentage point (annual) increase in  $\overline{\pi}_t$ 

# Effects larger under ARM than FRM





Effects larger when the shock is more persistent

$$ho_{\pi} = 0.994$$
  $ho_{\pi} = 0.95$   $ho_{\pi} = 0.75$ 



Responses to a TFP shock Cyclical properties

- Policy implications
  - Real effects of monetary policy larger in ARM countries (UK) than FRM countries (US)
  - Persistence matters: keeping low longer has bigger impact
- Some open issues
  - Housing construction or house prices?
  - Can monetary policy substitute for an "optimal debt contract"?

... what should optimal mon. policy be in the Eurozone?

# Calibration

| Symbol                                                                                                                                                                                                                                                  | Model                                                      | Data                                                       | Description                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Targeted in calibration:                                                                                                                                                                                                                                |                                                            |                                                            |                                                                                                                                               |
| $ \begin{array}{l} K \\ H \\ X_K \\ X_S \\ N \\ \widetilde{m}/(wn-\tau) \\ i^M \end{array} $                                                                                                                                                            | 7.06<br>5.28<br>0.156<br>0.054<br>0.255<br>0.185<br>0.0233 | 7.06<br>5.28<br>0.156<br>0.054<br>0.255<br>0.185<br>0.0233 | Capital stock<br>Housing stock<br>Capital investment<br>Housing structures<br>Hours worked<br>Debt-servicing costs (pre-tax)<br>Mortgage rate |
| Not targeted:                                                                                                                                                                                                                                           |                                                            |                                                            |                                                                                                                                               |
| Aggregate mortgage variables $\widetilde{D}$ $\gamma$                                                                                                                                                                                                   | 1.61<br>0.0144                                             | 2.35<br>0.0118                                             | Mortgage debt<br>Amortization rate                                                                                                            |
| $\begin{array}{l} \text{Capital owner's variables} \\ (1 - \tau_K)(r - \delta_K) \\ [(r - \delta)k + \widetilde{m}^*]/[(r - \delta)k + \widetilde{m}^* + \tau^*] \\ \widetilde{m}^*/[(1 - \tau_K)(r - \delta)k + \widetilde{m}^* + \tau^*] \end{array}$ | 0.012<br>0.31<br>0.089                                     | 0.013<br>0.39<br>N/A                                       | Net rate of return on capital<br>Income from assets to total income<br>Mortg. payments to total (net) income                                  |
| Homeowner's variables<br>$\tau_H$<br>$\widetilde{m}/[(1 - \tau_N)(wn - \tau)]$<br>$(wn - \tau)/(wn - \tau)$                                                                                                                                             | 0<br>0.24<br>1.00                                          | N/A<br>N/A<br>0.81                                         | Housing wedge<br>Debt-servicing costs (post-tax)<br>Income from labor to total income                                                         |
| Distribution of wealth<br>$(K + \widetilde{D})/(K + H)$<br>$(H - \widetilde{D})/(K + H)$                                                                                                                                                                | 0.71<br>0.29                                               | 0.82<br>0.18                                               | Capital owners<br>Homeowners                                                                                                                  |

# Calibration

| Symbol                                                                                                                                                                                                                                                  | Model                                                      | Data                                                       | Description                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Targeted in calibration:                                                                                                                                                                                                                                |                                                            |                                                            |                                                                                                                                               |
| $ \begin{array}{l} K \\ H \\ X_K \\ X_S \\ N \\ \widetilde{m}/(wn-\tau) \\ i^M \end{array} $                                                                                                                                                            | 7.06<br>5.28<br>0.156<br>0.054<br>0.255<br>0.185<br>0.0233 | 7.06<br>5.28<br>0.156<br>0.054<br>0.255<br>0.185<br>0.0233 | Capital stock<br>Housing stock<br>Capital investment<br>Housing structures<br>Hours worked<br>Debt-servicing costs (pre-tax)<br>Mortgage rate |
| Not targeted:                                                                                                                                                                                                                                           |                                                            |                                                            |                                                                                                                                               |
| Aggregate mortgage variables $\widetilde{D}$ $\gamma$                                                                                                                                                                                                   | 1.61<br>0.0144                                             | 2.35<br>0.0118                                             | Mortgage debt<br>Amortization rate                                                                                                            |
| $\begin{array}{l} \text{Capital owner's variables} \\ (1 - \tau_K)(r - \delta_K) \\ [(r - \delta)k + \widetilde{m}^*]/[(r - \delta)k + \widetilde{m}^* + \tau^*] \\ \widetilde{m}^*/[(1 - \tau_K)(r - \delta)k + \widetilde{m}^* + \tau^*] \end{array}$ | 0.012<br>0.31<br>0.089                                     | 0.013<br>0.39<br>N/A                                       | Net rate of return on capital<br>Income from assets to total income<br>Mortg. payments to total (net) income                                  |
| Homeowner's variables<br>$\tau_H$<br>$\widetilde{m}/[(1 - \tau_N)(wn - \tau)]$<br>$(wn - \tau)/(wn - \tau)$                                                                                                                                             | 0<br>0.24<br>1.00                                          | N/A<br>N/A<br>0.81                                         | Housing wedge<br>Debt-servicing costs (post-tax)<br>Income from labor to total income                                                         |
| Distribution of wealth<br>$(K + \widetilde{D})/(K + H)$<br>$(H - \widetilde{D})/(K + H)$                                                                                                                                                                | 0.71<br>0.29                                               | 0.82<br>0.18                                               | Capital owners<br>Homeowners                                                                                                                  |

# Cyclical properties

|                      | US data | Model |       |
|----------------------|---------|-------|-------|
|                      |         | FRM   | ARM   |
| Std                  |         | Ĩ     |       |
| Y                    | 1.92    | 0.94  | 1.04  |
| Rel. std             |         | Ī     |       |
| Y                    | 1.00    | 1.00  | 1.00  |
| С                    | 0.42    | 0.42  | 0.35  |
| X <sub>S</sub>       | 6.94    | 9.48  | 8.20  |
| $X_{K}$              | 2.45    | 1.76  | 3.01  |
| N                    | 0.92    | 0.24  | 0.30  |
| $\pi$                | 0.58    | 0.85  | 0.81  |
| i                    | 0.58    | 0.85  | 0.85  |
| i <sup>F</sup>       | 0.35    | 0.77  | N/A   |
| i <sup>F</sup> — i   | 0.42    | 0.21  | N/A   |
| q                    | 0.58    | 0.18  | 0.15  |
| PH                   | 1.57    | 1.13  | 0.97  |
| Corr                 |         | I     |       |
| $(C_t, Y_t)$         | 0.79    | 0.88  | 0.94  |
| $(X_{St}, Y_t)$      | 0.60    | 0.99  | 0.85  |
| $(X_{Kt}, Y_t)$      | 0.73    | 0.92  | 0.83  |
| $(N_t, Y_t)$         | 0.84    | -0.67 | -0.05 |
| $(\pi_t, Y_t)$       | 0.14    | 0.23  | 0.41  |
| $(i_t, Y_t)$         | 0.36    | 0.32  | 0.48  |
| $(i_t^F, Y_t)$       | 0.01    | 0.09  | N/A   |
| $(i_t^F - i_t, Y_t)$ | -0.49   | -0.98 | N/A   |
| $(q_t, Y_t)$         | 0.41    | 0.99  | 0.85  |
| $(p_{Ht}, Y_t)$      | 0.55    | 0.99  | 0.85  |

# 1% increase in $A_t$ , tight vs loose policy

FRM



Back to inflation target shock

# Equilibrium adjustments to $A_t$ shock



Responses to  $X_H$  (A and N constant)







#### Housing investment when homeowners can access bonds

