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1. Introduction 

In the wake of the financial crisis, financial regulators have developed new tools. Among these 

tools are countercyclical capital buffers, which aim to decrease the procyclicality of bank 

lending. The idea is that capital buffers should rise in good times, to build up high levels of 

equity capital. Then in bad times, capital requirements can be loosened, to encourage banks to 

lend more during the downturn, in an attempt to stimulate the economy. 

One difficulty of this is that banks may not wish to lend more during a downturn, even if their 

capital requirements are loosened. In particular, banks may display a precautionary motive : 

They might seek to build up capital stocks in a downturn, to avoid coming near their capital 

constraint, as this would involve costly adjustments. Hence, banks might optimally choose to 

reduce lending in a downturn, even if capital constraints were loosened. As a result, the 

countercyclical effects desired by regulators might be undermined. 

 The objective of this paper is to examine the lending behaviour and capital levels over the cycle 

of a bank which has an explicit precautionary motive. Precautionary effects are 3rd order, and so 

require 3rd order approximation schemes to capture them. Moreover, a capital constraint only 

binds occasionally, and models with occasionally binding constraints are known to be quite 

challenging to solve using non-linear methods.    

We present a model of the bank’s decision to hold capital, and to allocate assets between safe 

bonds and risky loans when faced with a stochastic default rate on risky loans. The bank 

(manager) aims to maximize the present value of dividends on behalf of the banks’s risk-averse 

shareholders. For simplicity, we abstract from any agency problems, and assume that banks act 

in the shareholders’ best interests.  

The model is partial equilibrium, since the rates of return on both the safe asset 𝑅𝑆 and the 

risky loan 𝑅𝐿 are exogenous. Risky loans have a higher rate of return, 𝑅𝐿 > 𝑅𝑆, but are also 

subject to a stochastic default rate 𝜉𝑡. Banks are faced with a capital constraint, that requires 

that bank equity capital be at least a fraction 𝛾 > 0 of the value of risky loans at all times. 

Clearly, if an unusually large share of loans defaults, then the capital constraint might be 



violated. In this case, the bank’s manager either reduces risky lending (deleverages) or reduces 

dividends until the capital constraint is satisfied once again. 

There are two main trade-offs in the model. First, higher dividends at date t increase current 

utility, but make it more likely that the capital constraint will be breached in t+1, triggering a 

costly deleveraging. Deleveraging is costly both because it reduces returns on the bank’s 

portfolio of assets, and also because of an adjustment cost. Second, a higher share of assets 

allocated to risky loans at date t has the benefit of increasing the share of assets earning a 

higher gross return, but also increases the losses from defaults and makes it more likely that 

the capital constraint will be breached in t+1.  

We show how to solve the model, which includes an occasionally binding capital constraint, 

necessitating the use of advanced non-linear numerical methods. We then use the model to 

examine the impact of the capital constraint on optimal lending behaviour. In particular, we 

check how lending reacts to a shock to the default rate on risky loans both with and without a 

capital constraint. Moreover, we are able to turn the precautionary motive in the model on and 

off, and examine the size and direction of the precautionary effect on bank lending and capital 

holdings in the model with a capital constraint. We are aiming to understand better whether 

countercyclical capital buffers could be an effective tool to encourage banks to increase their 

lending when hit by a higher than expected rate of defaults on their risky loans. 

2.  Model 

2.1  Model setup 

The objective function of the bank’s management is to maximize the present value of dividends 

on behalf of its risk-averse shareholders. The bank is  assumed to be small enough so as to not 

influence market interest rates. In other words, this is a partial equilibrium model of the bank’s 

portfolio and dividend choices when it faces a capital constraint.  

At the beginning of each period, bank assets 𝐴𝑡 are known, and a new value of the stochastic 

default rate 𝜉𝑡 on risky loans is realized. The bank then chooses how to allocate assets between 

safe bond paying 𝑅𝑆  and risky lending paying 𝑅𝐿 > 𝑅𝑆  , and how much to pay out to 



shareholders in dividends 𝐷𝑡, whilst respecting the capital constraint that equity capital 𝐾𝑡 

exceed a share 𝛾 of risky assets.  

The bank’s new share of risky loans 𝛼𝑡 leads to a new level of bank capital 𝐾𝑡 = [(1 − 𝜉𝑡)𝛼𝑡 +

(1 − 𝛼𝑡)]𝐴𝑡 − 𝐵, where 𝐵 are deposits, assumed to be constant. This share of risky loans must 

satisfy the capital constraint 

𝐾𝑡 = [(1 − 𝜉𝑡)𝛼𝑡 + (1 − 𝛼𝑡)]𝐴𝑡 − 𝐵 ≥ 𝛾𝛼𝑡(1 − 𝜉𝑡)𝐴𝑡 

The capital constraint can be conveniently expressed as a constraint on the portfolio share of 

risky loans 𝛼𝑡: 

𝛼𝑡 ≤ �1 −
𝐵
𝐴𝑡
�

1
𝛾 + 𝜉𝑡 − 𝛾𝜉𝑡

 

If the bank’s optimal choice for 𝛼𝑡 would breach the capital constraint, then it would find itself 

at a corner solution, and would choose its share of risky loans so as to just satisfy the capital 

constraint: 

𝛼𝑡 = �1 −
𝐵
𝐴𝑡
�

1
𝛾 + 𝜉𝑡 − 𝛾𝜉𝑡

 

Similarly, the optimal choice of dividend must satisfy an inequality constraint, as banks cannot 

pay negative dividends to their shareholders. If the bank’s optimal choice of dividend were to 

breach this lower bound, then it would be in a corner solution with 𝐷𝑡 = 𝐷 > 0, where 𝐷 

represents some (small) inalienable and possibly non-pecuniary benefit from being a bank 

shareholder. In our numerical example, we set 𝐷 = 0.01. Effectively, lower dividends are a 

form of ‘punishment’ to shareholders when the bank’s level of capital becomes so low that it is 

unable to lend optimally, and must recapitalise quickly.   

Once (𝛼𝑡,𝐷𝑡) have been chosen optimally, next period’s assets are calculated as 

𝐴𝑡+1 = 𝑅𝑆(1 − 𝛼𝑡)𝐴𝑡 + 𝑅𝐿(1− 𝜉𝑡)𝛼𝑡𝐴𝑡 − 𝑏𝐴𝑡(𝛼𝑡 − 𝛼)2 − 𝐷𝑡 

where 𝑏𝐴𝑡(𝛼𝑡 − 𝛼)2 are the adjustment costs to deviating from the steady-state share of 

loans.  

2.2  Bank’s optimization problem 



Now we turn to the bank’s optimization problem. The bank chooses the share of risky loans and 

dividends so as to maximize the expected discounted sum of utilities from dividends, whilst 

respecting the regulatory capital constraint and the lower bound on dividends: 

𝑉(𝐴0) = max
{𝐷𝑡,𝛼𝑡}𝑡=0∞ ,

𝐸0�𝛽𝑡𝑢(𝐷𝑡)
∞

𝑡=0

                                                           (1) 

Subject to: 

𝐴𝑡+1 = 𝑅𝑆(1 − 𝛼𝑡)𝐴𝑡 + 𝑅𝐿(1 − 𝜉𝑡)𝛼𝑡𝐴𝑡 − 𝑏𝐴𝑡(𝛼𝑡 − 𝛼)2 − 𝐷𝑡                               (2) 

𝛼𝑡 ≤ �1 −
𝐵
𝐴𝑡
�

1
𝛾 + 𝜉𝑡 − 𝛾𝜉𝑡

                                                                   (3) 

𝐷𝑡 ≥ 𝐷 > 0                                                                                  (4) 

The bank’s optimal portfolio and dividend choices satisfy the first order conditions: 

𝑢𝐷(𝐷𝑡) + 𝜇𝑡

= 𝛽𝐸𝑡 �[𝑢𝐷(𝐷𝑡+1) + 𝜇𝑡+1] ∙ (𝑅𝑆(1 − 𝛼𝑡+1) + 𝑅𝐿(1 − 𝜉𝑡+1)𝛼𝑡+1 − 𝑏(𝛼𝑡+1 − 𝛼)2)

+ 𝜆𝑡+1
1

𝛾 + 𝜉𝑡 − 𝛾𝜉𝑡
𝐵

(𝐴𝑡+1)2�                                                                                                      (5) 

 

[𝑢𝐷(𝐷𝑡) + 𝜇𝑡][(𝑅𝐿(1 − 𝜉𝑡) − 𝑅𝑆)𝐴𝑡 − 2𝑏𝐴𝑡(𝛼𝑡 − 𝛼)] + 𝜆𝑡 = 0                              (6) 

where 𝜆𝑡 and 𝜇𝑡 are the date t Lagrange multipliers on the capital constraint and dividend 

lower bound respectively. These LaGrange multipliers represent the utility cost to hitting the 

capital constraint or dividend lower bound, respectively.  

  

2.2.1  Interior solution:  

At an interior solution at date t, the current period Lagrange multipliers are equal to zero, and 

(𝐷𝑡,𝛼𝑡) satisfy: 

𝛼𝑡 = 𝛼 + (𝑅𝐿(1 − 𝜉𝑡) − 𝑅𝑆)
1

2𝑏
< �1 −

𝐵
𝐴𝑡
�

1
𝛾 + 𝜉𝑡 − 𝛾𝜉𝑡

                                     (7) 



𝑢𝐷(𝐷𝑡) = 𝛽𝐸𝑡 �[𝑢𝐷(𝐷𝑡+1) + 𝜇𝑡+1] ∙ (𝑅𝑆(1 − 𝛼𝑡+1) + 𝑅𝐿(1− 𝜉𝑡+1)𝛼𝑡+1 − 𝑏(𝛼𝑡+1 − 𝛼)2)

+ 𝜆𝑡+1
1

𝛾 + 𝜉𝑡 − 𝛾𝜉𝑡
𝐵

(𝐴𝑡+1)2�                                                                                        (8) 

 

2.2.2  Capital constraint binds 

The capital constraint binds when the optimal share of risky loans exceeds the maximum value 

which would satisfy the capital constraint.  

𝛼 + (𝑅𝐿(1− 𝜉𝑡) − 𝑅𝑆)
1

2𝑏
≥ �1 −

𝐵
𝐴𝑡
�

1
𝛾 + 𝜉𝑡 − 𝛾𝜉𝑡

 

In this case, 𝛼𝑡 is chosen to just satisfy the capital constraint with equality:  

𝛼𝑡 = �1 −
𝐵
𝐴𝑡
�

1
𝛾 + 𝜉𝑡 − 𝛾𝜉𝑡

 

while dividends satisfy either (6) or (8), depending on whether the dividend lower bound binds 

or not.  

 

2.3  Comparative Statics and the Precautionary Motive 

The capital constraint comes down to a condition on the share of assets that can be allocated to 

risky lending (3).  

𝛼𝑡 ≤ �1 −
𝐵
𝐴𝑡
�

1
𝛾 + 𝜉𝑡 − 𝛾𝜉𝑡

  

The maximum allowable share of risky loans is greater for lower default rates 𝜉𝑡, higher value of 

initial assets 𝐴𝑡 in excess of deposits 𝐵 and looser capital constraints (smaller 𝛾).  Hitting the 

capital constraint is costly, because it requires deviating from the optimal share of risky loans in 

the portfolio, in addition to an adjustment cost to deleveraging. It may also require a decrease 

in dividends paid to the bank’s shareholders. The precautionary motive stems from banks’ 

reluctance to hit the capital constraint, causing them to try to increase bank equity capital by 



choosing low dividends and/or deleveraging. In our model, the choice between increasing 

equity capital by reducing dividends and deleveraging is endogenous, allowing us to better 

understand bank behaviour in a downturn.  

 

3.  Solving the Model 

Dynamic optimization problems with occasionally binding constraints are notoriously 

challenging to solve. Moreover, some of the methods which have been proposed shut down 

any precautionary effects and risk premia, because they linearization and/or perfect foresight. 

These include the linear method proposed by Eggertson and Woodford (2003), implemented by 

the OccBin add-on for Dynare developed by Guerrieri and Iacoviello (2014), which have been 

popular in the monetary economics literature on zero lower bounds on interest rates (ZLBs). 

The ‘extended path’ method proposed by Adjemian and Juillard (2011) relies on perfect 

foresight, which also excludes any precautionary effects. As examining the impact of the 

precautionary motive of banks which face a capital constraint is the main objective of this 

paper, methods which shut down precautionary effects are clearly inappropriate.  

 

More promising is the approach described by Holden and Paetz (2012), which relies neither on 

linearization nor on perfect foresight, and hence can capture precautionary effects. We solve 

the model by using Holden’s toolkit for occasionally binding constraints in conjunction with 

Dynare. Since precautionary effects show up as 3rd order approximation terms, we can turn the 

precautionary motive on and off by choosing either a 3rd or 2nd order approximation in Dynare, 

respectively. This will allow us to isolate the impact of the precautionary motive.  

 

Applying Holden and Paetz (2012)’s method involves extend the set of optimality conditions 

using one auxiliary variable for each occasionally binding constraint. In our model, this involves 

introducing the auxiliary variables 𝐶𝑡 and 𝐹𝑡 defined as: 

 

𝐶𝑡 = 𝑚𝑎𝑥�0,𝛽𝐸𝑡[𝑢𝐷(𝐷𝑡+1) ∙ (𝑅𝑆(1 − 𝛼𝑡+1) + 𝑅𝐿(1 − 𝜉𝑡+1)𝛼𝑡+1 − 𝑏(𝛼𝑡+1 − 𝛼)2)] − 𝑢𝐷�𝐷�� 



 

𝐹𝑡 = max �0,𝛼 + (𝑅𝐿(1 − 𝜉𝑡) − 𝑅𝑆)
1

2𝑏
− �1 −

𝐵
𝐴
�

1
𝛾 + 𝜉 − 𝛾𝜉

� 

In both cases, the auxiliary variables take the value 0 (zero) for an interior solution, and a non-

zero value when the constraint binds. We then rewrite the optimality conditions as suggested 

by Holden and Paetz (2012):  

𝑢𝐷(𝐷𝑡) = 𝛽𝐸𝑡�[𝑢𝐷(𝐷𝑡+1)] ∙ (𝑅𝑆(1 − 𝛼𝑡+1) + 𝑅𝐿(1 − 𝜉𝑡+1)𝛼𝑡+1 − 𝑏(𝛼𝑡+1 − 𝛼)2)� − 𝐶𝑡 

𝛼𝑡 = 𝛼 + (𝑅𝐿(1 − 𝜉𝑡) − 𝑅𝑆)
1

2𝑏
− 𝐹𝑡 

We then ask Dynare, a standard piece of software, to solve the extended system of five non-

linear equations ()-() and (2) in the five endogenous variables (𝐴𝑡,𝐷𝑡 ,𝛼𝑡,𝐶𝑡,𝐹𝑡).   

 

4.  Steady state and parameterization of the model 

 

We use the non-stochastic steady state in the absence of a capital constraint to parameterize 

the model. There are 9 parameters to set: the discount factor 𝛽, the return on the safe asset 

𝑅𝑆, the return on risky loans 𝑅𝐿, the average default rate on risky loans 𝜉 its variance 𝜎𝜉
2 and 

autoregressive parameter 𝜌, the parameters of the adjustment cost to portfolio choice 𝛼 and 𝑏, 

the capital constraint parameter 𝛾  and the size of deposits 𝐵 . Table 1 summarizes the 

parameter choices, while Table 2 gives the model’s steady state.  

 

First, we normalize the assets to 𝐴 = 100. We set the discount factor 𝛽 = (0.96)1/4 quarterly, 

corresponding to an annual discount factor is 0.96. The mean quarterly default rate on risky 

loans is set to 0.5%, which corresponds to an annual default rate of 2.0%. The autocorrelation 

parameter 𝜌 is set to 0.80, while the variance is set to (0.25%)2. We set the target portfolio 

share of risky loans 𝛼 to 0.80, and the cost of a unit of square deviation from that target 

portfolio share of risky loans is 𝑏𝐴 = 0.002. We set the ‘risk premium’ on risky loans (the 

excess return on risky loans) 𝑅𝐿�1 − 𝜉� − 𝑅𝑆 = 0.002 quarterly.  We use the equation for 



optimal interior portfolio choice, evaluated at the steady state, to obtain the steady state value 

for portfolio choice as: 

𝛼 = 𝛼 + �𝑅𝐿 �1− 𝜉� − 𝑅𝑆�
1

2𝑏
 

Next, we use the optimality condition for dividends, evaluated at the steady state, to pin down the 

return on the safe asset as: 

𝑅𝑆 =
1
𝛽
− [𝑅𝐿(1 − 𝜉) − 𝑅𝑆]𝛼 − 𝑏(𝛼 − 𝛼)2 

This yields the value 𝑅𝑆 = 1.0087 quarterly, which gives a return of 3.5% annually. Substituting 

this back into the risk premium definition gives a quarterly return on risky loans of 𝑅𝐿 =

1.0157, which corresponds to an annual return of 6.4%. Evaluating the transition equation at 

the steady state pins down steady state dividends 𝐷
𝐴

= 1
𝛽
− 1 at 1.03% of bank assets quarterly, 

or about 4.12% annually.  

The capital constraint is assumed to require that the bank’s equity capital, the difference 

between the bank’s assets and its (constant) deposits 𝐵 is at least 𝛾 = 8% of the value of its 

risky loans. Finally, we choose deposits 𝐵 so that in the steady state, equity capital is equal to 

about 10% of the value of risky loans and the capital constraint does not bind in good times. 

The steady state equations can help to illustrate the model’s key mechanisms. Begin with the 

non-stochastic steady state equation for optimal portfolio choice.  

�̅�
2𝑏

[𝑅𝐿(1 − 𝜉) − 𝑅𝑆] = 𝛼 − 𝛼� 

Near the steady-state, a small increase in the default rate to  𝜉 > 𝜉̅ is expected to lead to a 

decrease in the optimal share of risky loans to below their steady state level 𝛼 < 𝛼�, as returns 

on risky loans fall relative to safe assets.  

 

5. Quantitative Results 

We solve the model using Tom Holden’s additions to Dynare, which allow us to approximate a 

3rd order solution to the model of bank lending and dividend behaviour with capital constraints. 

This method ensures that the precautionary effects are preserved. We compare the behaviour 



of lending, dividends and bank capital after a one standard-deviation positive shock to the 

default rates on risky loans. While this shock is too small to cause the bank’s capital constraint 

to bind, the threat of hitting it in the future increases, as the set of shocks which would lead to 

a corner solution increases. As a result, banks reduce dividends, and deleverage sharply. This is 

illustrated by the impulse-responses displayed in Figure 1. Bank lending, 𝛼𝑡𝐴𝑡 falls by 10% on 

impact, while dividends fall by 8% and the bank’s equity capital falls by 14.5%. The recovery is 

fairly slow: It takes about 5 years for the bank to return to the steady state. This indicates that 

countercyclical capital buffers, which seek to reduce capital requirements after a ‘bad’ shock to 

the economy, might not be effective at mitigating the procyclicality of lending behaviour. 

Banks’ optimal behaviour implies deep cuts in lending that are unlikely to be reversed by more 

lenient capital requirements.  

 

Next, we examine whether the bank’s steep cut in lending is due to precautionary motives. The 

idea is that in bad times, when default rates are higher, banks would seek to deleverage 

sharply, in order to rebuild their equity capital, staying well away from the capital constraint.  

We examine the importance of the precautionary motive by shutting it down. We do this by 

solving the model using only a 2nd order approximation to the policy functions, which shuts 

down any precautionary effects. Indeed, in the absence of a precautionary motive, the model 

bank reacts quite differently to a shock to its default rate, as illustrated in Figure 2. This 

underlines the importance of the precautionary motive, and suggests that models of bank 

behaviour which abstract from it might give erroneous results.  

 

Still, these results should be treated with some caution. Little is known about the accuracy of 

perturbation methods when constraints are occasionally non-binding. Using the global methods 

described in Christiano and Fisher (2000), while challenging, would have the advantage of a 

known and high accuracy level.  

 

 

 



Conclusions 

We set up and solve a dynamic model of bank lending and dividend choices when facing 

stochastic default rates on risky loans and a capital constraint. We use a 3rd order non-linear 

solution method that does not rely on perfect foresight, in order to preserve any precautionary 

effects. We show that in the model which allows for precautionary effects, banks deleverage 

sharply when default rates increase, in order to rebuild their capital stocks. The strength of the 

decline in lending suggests that loosening capital constraints to encourage banks to increase 

their lending is not likely to succeed. This conclusion should be treated with some caution, as it 

is based on a local, rather than a global solution method. Future work should focus on solving 

the model presented here using a projection method, whose accuracy is well-established.    
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Tables  

Table 1: Parameterization of the Numerical Examples 

Parameter Value 

𝜷 0.9898 

𝑹𝑺 1.0087 

𝑹𝑳 1.0157 

𝝃 0.005 

𝝆 0.800 

𝝈𝝃 0.0025 

𝜶 0.800 

𝒃 0.002 

𝑩 90 

𝜸 0.08 

 

Table 2: Steady State 

Variable Value 

𝑨 100 

𝑫 1.02 

𝜶 0.805 

 

  



 

Figures 

 

 

Figure 1: Impulse responses to a one standard deviation shock (increase) to the default rate 
on risky loans for the 3rd order approximation to the model with a capital constraint. Periods 
are quarters, so the bank takes about 5 years to return to its steady state lending and 
dividend levels.  
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Figure 2: Impulse responses to a one standard deviation shock (increase) to the default rate 
on risky loans for the 2rd order approximation to the model with a capital constraint. Periods 
are quarters, so the bank takes about 4 years to return to its steady state lending and 
dividend levels.  
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Appendix 

 

Characterizing the bank’s optimal choices analytically 

We now proceed to derive first order optimality conditions for the optimization problem with 

occasionally binding capital constraints described in equations (1)-(4). The corresponding 

Lagrangian is: 

𝐿 = 𝐸0�𝛽𝑡 �𝑢[𝑅𝑆(1 − 𝛼𝑡)𝐴𝑡 + 𝑅𝐿(1 − 𝜉𝑡)𝛼𝑡𝐴𝑡 − 𝑏𝐴𝑡(𝛼𝑡 − 𝛼)2 − 𝐴𝑡+1]
∞

𝑡=0

+ 𝜆𝑡 ��1 −
𝐵
𝐴𝑡
�

1
𝛾 + 𝜉𝑡 − 𝛾𝜉𝑡

− 𝛼𝑡�

+ 𝜇𝑡�𝑅𝑆(1 − 𝛼𝑡)𝐴𝑡 + 𝑅𝐿(1 − 𝜉𝑡)𝛼𝑡𝐴𝑡 − 𝑏𝐴𝑡(𝛼𝑡 − 𝛼)2 − 𝐴𝑡+1 − 𝐷�� 

 

The first order conditions are: 

𝜕𝐿
𝜕𝐴𝑡+1

= 𝛽𝑡[−𝑢𝐷(𝐷𝑡)−𝜇𝑡]

+ 𝛽𝑡+1𝐸𝑡 �[𝑢𝐷(𝐷𝑡+1) + 𝜇𝑡+1]

∙ (𝑅𝑆(1 − 𝛼𝑡+1) + 𝑅𝐿(1 − 𝜉𝑡+1)𝛼𝑡+1 − 𝑏(𝛼𝑡+1 − 𝛼)2)

+ 𝜆𝑡+1
1

𝛾 + 𝜉𝑡 − 𝛾𝜉𝑡
𝐵

(𝐴𝑡+1)2� = 0 

𝜕𝐿
𝜕𝛼𝑡

= [𝑢𝐷(𝐷𝑡) + 𝜇𝑡][−𝑅𝑆𝐴𝑡 + 𝑅𝐿(1 − 𝜉𝑡)𝐴𝑡 − 2𝑏𝐴𝑡(𝛼𝑡 − 𝛼)] − 𝜆𝑡 = 0 

Which reduce to equations (5) and (6) respectively: 

 



𝑢𝐷(𝐷𝑡) + 𝜇𝑡 = 𝛽𝐸𝑡 �[𝑢𝐷(𝐷𝑡+1) + 𝜇𝑡+1] ∙ (𝑅𝑆(1 − 𝛼𝑡+1) + 𝑅𝐿(1 − 𝜉𝑡+1)𝛼𝑡+1 − 𝑏(𝛼𝑡+1 − 𝛼)2)

+ 𝜆𝑡+1
1

𝛾 + 𝜉𝑡 − 𝛾𝜉𝑡
𝐵

(𝐴𝑡+1)2� 

[𝑢𝐷(𝐷𝑡) + 𝜇𝑡][(𝑅𝐿(1− 𝜉𝑡) − 𝑅𝑆)𝐴𝑡 − 2𝑏𝐴𝑡(𝛼𝑡 − 𝛼)] = −𝜆𝑡 

 

In addition, the Kuhn-Tucker conditions apply: 

𝐷𝑡 − 𝐷 ≥ 0 

𝜇𝑡 ≥ 0 

𝜇𝑡�𝐷𝑡 − 𝐷� = 0 

�1 −
𝐵
𝐴𝑡
�

1
𝛾 + 𝜉𝑡 − 𝛾𝜉𝑡

− 𝛼𝑡 ≥ 0 

𝜆𝑡 ≥ 0 

𝜆𝑡 ��1 −
𝐵
𝐴𝑡
�

1
𝛾 + 𝜉𝑡 − 𝛾𝜉𝑡

− 𝛼𝑡� = 0 

 

Finally, the bank’s optimal choices are also characterized by the transition equation (2).  

𝐴𝑡+1 = 𝑅𝑆(1 − 𝛼𝑡)𝐴𝑡 + 𝑅𝐿(1− 𝜉𝑡)𝛼𝑡𝐴𝑡 − 𝑏𝐴𝑡(𝛼𝑡 − 𝛼)2 − 𝐷𝑡 

 

 

 

 

 

 

 

 

1) Maturity structure of loans. Implicitly assuming that all loans are one period, i.e. can choose the 
share of loans 𝛼𝑡 to lie anywhere between 0 and the maximum that would satisfy the capital 



constraint. Alternative is to assume that a share 𝛿 of loans matures each period, and the 
maximum decline in share of loans is to shift maturing loans to riskless asset.  Latter is 
technically much more cumbersome.  

2) Stochastic process for default rate on risky loans. To capture greater volatility during recessions, 
𝜉𝑡+1 could follow a GARCH process. This is not necessary to produce a precautionary effect – for 
that, a concave utility function with a positive 3rd derivative (see Kimball) would suffice. GARCH 
volatility that was countercyclical would, however, amplify the precautionary effect during 
recessions.  

•     
Steady state: 

1
𝛽

= (𝑅𝑆(1 − 𝛼) + 𝑅𝐿(1− 𝜉)𝛼 − 𝑏(𝛼 − 𝛼)2) 

𝛼 + (𝑅𝐿(1− 𝜉) − 𝑅𝑆)
1

2𝑏
= 𝛼 

𝐷
𝐴

= 𝑅𝑆(1 − 𝛼) + 𝑅𝐿(1 − 𝜉)𝛼 − 𝑏(𝛼 − 𝛼)2 − 1 

 

Set either 𝑅𝐿 or 𝛼, as well as 𝛽, 𝜉,𝑅𝑆.  
𝑅𝐿(1− 𝜉) − 𝑅𝑆 = 0.002 

𝛽 = (0.96)1/4 
𝜉 = 0.005 
𝛼 = 0.80 
𝑏 = 0.2 

𝛼 − 𝛼 = [𝑅𝐿(1− 𝜉) − 𝑅𝑆]
1

2𝑏
 

𝑅𝑆 =
1
𝛽
− 𝛼[𝑅𝐿(1 − 𝜉) − 𝑅𝑆] + 𝑏(𝛼 − 𝛼)2 

𝑅𝐿 =
𝑅𝑆

1 − 𝜉
+ 𝑅𝐿(1 − 𝜉) − 𝑅𝑆 

If set 𝛼 = 0.80, then the implied value for the interest rate on risky loans is 𝑅𝐿 =1.0157, while the 
dividend rate would be 1.01% and 𝑅𝑆 = 1.0087, all quarterly.  
 


