NATIONAL INSTITUTE DISCUSSION PAPERS Discussion Papers range over the whole field of macro and micro economics including studies in the field of European integration, productivity and industrial policy and macroeconomic simulations. The publications below are available on our website www.niesr.ac.uk and free on application to our Publications Department. | 153 | A radial basis function artificial neural network test for neglected | |-----|---| | | nonlinearity Andrew P. Blake and George Kapetanios | | 154 | A radial basis function artificial neural network test for ARCH Andrew P. | | 155 | The forecasting performance of the OECD composite leading indicators for | | | France, Germany, Italy and the UK G. Camba-Mendez, G. Kapetanios, R.J. | | | Smith and M.R. Weale | | 156 | An encompassing framework for evaluating simple monetary policy rules
Ray Barrell, Karen Dury and Ian Hurst | | 157 | Labour productivity and convergence within Europe: East German and Iris | | 3 | experience Ray Barrell and Dirk Willem te Velde | | 00 | Mason | | 159 | Productivity, technology and skills in banking: commercial lending in | | 3 | Britain, the United States and Germany Geoff Mason | | 160 | international monetary policy coordination: an evaluation of cooperative strategies using a large econometric model Ray Barrell, Karen Dury and Ian | | | Hurst | | 161 | The mix of graduate and intermediate-level skills in Britain: what should the | | 162 | Capital income taxation and public choice Jayasri Dutta, James Sefton and | | | Martin Weale | | 163 | Real national income J.A. Sefton and M.R. Weale | | 64 | Testing for a unit root against nonlinear star models George Kapetanios | | 65 | Model selection uncertainty and dynamic models George Kapetanios | | .66 | Information criteria, model selection uncertainty and the determination of | | | cointegration rank George Kapetanios | | 67 | Incorporating lag order selection uncertainty in parameter inference for AR | | 3 | models George Kapetanios | | 8 | Choosing the regime: macroeconomic effects of UK entry into EMU Ray Barrell and Karen Dury | | 69 | Cointegrating VAR models with endogenous I(0) variables: theoretical | | | extensions and an application to UK monetary policy George Kapetanios, | | | James Mitchell and Martin R. Weale | | 70 | From unemployment to self-employment: developing an effective structure | | | of micro-finance support Hilary Metcalf and Roger Benson | | 71 | The determinants of pay levels and fringe benefit provision in Britain $John$ | | 3 | Forth and Neil Millward | | 72 | The importance of long-run structure for impulse response analysis in VAR | # INVESTMENT AND UNCERTAINTY IN THE G7 Joseph P. Byrne and E. Philip Davis 3 July 2002 #### Abstract In this paper we assess the impact of a comprehensive range of macroeconomic and financial measures of uncertainty on business investment in the major industrial countries using Pooled Mean Group Panel Estimation. We discover a significant negative long run effect from both nominal and real exchange rate volatility using a GARCH (1,1) approach on aggregate investment for the G7. This is also found in poolable subgroups including all four larger European countries. Results for an adverse impact of uncertainty on investment are also found for volatility of long rates in recent years but not for inflation, share prices and industrial production. The results imply that to the extent that EMU favours lower exchange rate and long interest rate volatility, it will also be beneficial to investment. Keywords: Investment; Macroeconomic Uncertainty; Panel Estimation. JEL Classification Numbers: E22, F31. models James Mitchell Byrne: NIESR, 2 Dean Trench Street, London SW IP 2HE. e-mail: jbyrne@niesr.ac.uk. Davis: Brunel University, Uxbridge, Middlesex, UB8 3PH and NIESR, e-mail: e. philip_davis@msn.com. The authors wish to thank Ray Barrell, Andy Blake, Sylvia Gottschalk, DeAnne ulius, Nigel Pain, Simon Price, Martin Weale and other seminar participants at NIESR for helpful suggestions. This research was financed by ESRC project L138250122: Fluctuations and Long-Term Prosperity: A study of UK and international economies. ### 1. Introduction The benefits of macroeconomic stability are increasingly emphasised by policy makers. This has followed but also underpinned a growing academic interest in economic uncertainty and its effects on macroeconomic variables. For example, there is recent empirical work on the effect of uncertainty on aggregate output growth, with some authors coming to the view that it is generally harmful (Kneller and Young, 2000), although others suggest this depends on the source of the shocks, whether real or nominal (see Blackburn and Pelloni, 2001). Output growth is crucially dependent upon business investment and the focus of this paper is the relationship between the latter and uncertainty. The two main strands of theoretical literature on this relationship come to different conclusions. The call option approach considers that there is a benefit to await the arrival of new information in an uncertain environment with irreversible investment. Consequently, increased uncertainty requires an investment project to have a greater net present value than would otherwise be the case to justify it (see Dixit and Pindyck, 1994), and increased uncertainty reduces investment. In contrast, Hartman (1972) and Abel (1983) suggest that increased uncertainty raises investment where the marginal product of capital is an increasing function of prices and increases in the variance of prices will increase the expected return. While there is an extensive empirical literature on uncertainty and investment (see the review in Carruth, Dickerson and Henley 2000b), it is mainly undertaken on the basis of one country or one indicator. Carruth et al. (2000b, page 129) are of the view that the broad consensus is that the relationship is negative and this consensus emerges from a wide range of models and alternative methods of proxying uncertainty. On the other hand, Huizinga (1993) suggests that effects vary depending on the source of uncertainty. To give one example, differing results for exchange rate volatility have been found by authors such as Goldberg (1993) and Darby, Hughes Hallett, Ireland and Piscittelli (1999) depending on the countries studied and the data period used. Recently, panel econometric methods have become popular in multi-country macroeconomic studies. These methods, which have both a time series and cross sectional dimension, are a means of increasing the efficiency of parameter estimates when testing a particular long run hypothesis. However when adopting this approach it is important to test for cross sectional heterogeneity to ensure that panel estimates are not biased due to unreasonable pooling of countries. Taking account of these factors we conduct a multi-country study of investment and uncertainty using Pesaran, Shin and Smith's (1999) Pooled Mean Group Estimation (PMGE). We assess long term effects on investment of measures of conditional volatility taking account of heteroscedasticity (estimated errors in a GARCH (1,1) equation), and short term dynamic effects our uncertainty proxies on investment. The indicators used include both financial variables (equity price, interest rates and exchange rates) and macroeconomic variables (e.g. prices and inflation). In an Appendix we also assess simpler measures of volatility (based on moving average standard deviations or variances¹). We come to the conclusion that the source of volatility measures typically does matter, as does the way that it is modelled. Besides the general interest in such work, the effect of uncertainty on investment is an important aspect of the benefits of EMU membership for the UK and current incumbents, since EMU is likely to remove part of exchange rate volatility and, possibly, part of long rate volatility also. The empirical approach of this paper is basically to estimate investment functions which are partly common across countries based on PMG panel estimation methods, while paying particular attention to whether country homogeneity is accepted by the data. The paper is structured as follows. First we provide a brief overview of the literature on investment functions, then at somewhat greater length cover the issue of uncertainty and investment. In Section 3 we set out the data, and in Section 4 we consider panel results whilst Section 5 draws conclusions. ### 2. Literature Survey ## 2.1 Theory of investment and effects of uncertainty Modern theories of aggregate investment behaviour in the literature and resultant empirical work have developed from the neo-classical model first proposed by Jorgensen (1963) and the Tobin's Q model originally due to Tobin (1969) and Brainard and Tobin (1968). The neo-classical model is itself an extension of the simple accelerator models, but augmented to include the effects of relative price variables, specifically the user cost of capital. This is computed from the purchase cost of the additional capital, the rates of interest and depreciation and the levels of relevant taxes. Alternatively, the Q-theory of investment argues that the level of investment is determined by the average Q statistic, defined as the financial value of the firm relative to the replacement cost of its capital.² In the neo-classical model, the firm maximises the discounted flow of all future profits, with adjustment costs assumed to be absent. If we assume that the production function is characterised by a constant elasticity of substitution between capital and other inputs, then we can obtain the following familiar relationship between the desired capital stock, the level of output and the user cost of capital, from the static first order conditions of the firm's
maximisation problem $$K^* = \frac{\alpha Y}{C_k^{\sigma}} \tag{1a}$$ where K is the desired level of the capital stock, Y is the level of output, C_k is the user cost of capital (otherwise referred to as the rental cost), α is a function of capital and labour and other factors, and σ is the elasticity of substitution parameter between inputs in the production function. The user cost of capital is usually defined as $$C_k = P_k(r + \delta) \frac{(1 - tdep - tcred)}{(1 - t)}$$ (1b) where P_k is the purchase price of a unit of capital, r is the real post-tax financial cost of capital, δ is the depreciation rate of capital (assumed to be geometric), tered is the rate of investment tax credit, tdep is the discounted rate of depreciation tax allowances and t is the rate of corporation tax. By assuming either that net investment is determined as a distributed lag process of changes in the desired capital stock, or that there are explicit costs of adjustment, it is possible to obtain an investment function for empirical estimation that equates the level of investment to lags of the change in the level of output and the user cost of capital. This is illustrated in the following four equations, where equations (2a) and (2b) show the evolution of investment in terms of K, the capital stock, (where δ is the depreciation rate and g is the steady state growth rate), (2c) integrates this into the equation (1a) and (2d) sets out the equation in logarithmic form $$I = \delta K + dK \tag{2a}$$ $$I = (g + \delta)K \tag{2b}$$ $$I = A(g + \delta)Y/C^c \tag{2c}$$ $$\ln(I_r) = \theta_0 + \theta_1 \ln(Y_r) - \varepsilon \ln(C_r)$$ (2d) An alternative formulation of aggregate investment behaviour, originally developed by Tobin (1969) and Brainard and Tobin (1968) argues that investment should be an increasing function of the ratio of the capitalised financial value of the firm relative to the replacement Note that while measures based on variance and standard deviation are often referred to as unconditional, the fact that the measures usually take rolling averages implies that there is conditionality in these measures also. Both Chirinko (1993) and Caballero (1999) provide excellent surveys of modern developments in the investment (purchase) cost of the unit of capital. This ratio is known as Tobin's Q or average Q. We can write the investment equation most simply as $$=\beta Q$$ (3 stimulus to investment. Marginal Q is unobservable; however Hayashi demonstrated that when to the current marginal costs of investment. Values of marginal Q above one will provide a in the firm's optimisation problem with adjustment costs, then investment is dependent on the (1980), Hayashi (1982) and Lucas and Prescott (1971) have shown that if Tobin's Q is included investment should not be undertaken and the capital stock should in fact be reduced. Abel undertaken and the capital stock increased, whereas for values of Q less than one further are additional difficulties in using Q to forecast, centred on the need to project equity prices Unfortunately the Q model's empirical performance has been generally unsatisfactory and there empirical researchers have included measures of average Q in their investment equations.3 inter alia that there is no market power) then marginal and average Q are equal. So in practice the production and adjustment cost functions adhere to certain homogeneity conditions (implying level of marginal Q. Marginal Q is the ratio of the future marginal returns on investment, relative where β is a strictly positive parameter. If Q is greater than one then the investment should be specification and test for Tobin's Q effects based on average Q. shown in Section 4 and used as a basis for testing uncertainty we use a basic neoclassical forward, (for recent work on Q see Cooper and Ejarque, 2001). In our investment specification In the context of these structures, the basic intuition of an effect of uncertainty on investment stems from the option characteristics of an investment project, given the option of delaying the project and its irreversibility once begun, together with the uncertainty over future prices that will determine its profitability. The value of the option stems from the fact that delaying the project may give a more accurate view of market conditions. (see Dixit and Pindyck, 1994). The call option implies a difference between the net present value (NPV) of an investment and its current worth to the investor. To lead to expenditure, the NPV has to exceed zero so as to cover the option value of waiting. The expectation is that heightened uncertainty, by leading to delay in projects, would lead to a fall in aggregate investment. There may also be threshold effects i.e. rates of return below which investment is not undertaken, depending on investors' risk aversion. Following the derivation in Pindyck and Solimano (1993), one may consider at what point it is worth paying a sunk cost I for a project whose present value is V, if V evolves according to geometric Brownian motion, where dz is the increment of a Wiener process. $$dV = \alpha V dt + \sigma V dz \tag{4}$$ The equation implies that the current value of a project is known but future values are lognormally distributed with a variance growing linearly with the time horizon. Even as information arises and V evolves, the future value of the project is always uncertain. The investment rule is to maximise the value of the investment opportunity F(V). The payoff from investing at any given time t is V-I, so the maximand subject to equation (4) is: $$F(V) = \max E[(V_T - I)e^{-\rho T}]$$ (5) where T is the future time when the investment is made, and ρ is a discount rate. It is assumed $\alpha < \rho$ or the firm would never invest, and we define δ as ρ - α . The solution gives an optimal investment rule in the form of a critical value V^* so it is optimal to invest when $V \ge V^*$ The value of the investment opportunity is: $$F(V) = \alpha V^{\beta} \tag{6}$$ where β is given by $$\beta = 1/2 - (\rho - \delta)/\sigma^2 + \sqrt{[(\rho - \delta)/\sigma^2 - 1/2]^2 + 2\rho/\sigma^2} > 1$$ 3 While V and a are: $$V' = \frac{\beta}{\beta - 1}I$$ (8) $$a = \frac{V - I}{(V^*)^{\beta}} = \frac{(\beta - 1)^{\beta - 1}}{\beta^{\beta} I^{\beta - 1}}$$ (9) As $\beta > 1$, $V^* > I$. So uncertainty and irreversibility together make a wedge between V^* and the cost of investment I. Because $\delta \beta / \delta \sigma < 0$, the wedge is larger, the greater is σ , the amount of uncertainty over future values of V. To illustrate, if $\sigma = 0$ and $\rho = \delta = 0.05$, then $V^* / I = 1.86$ if $\sigma = 0.2$ and $V^* / I = 3.27$ if $\sigma = 0.4$. Abel et al. (1996) extended this theory of irreversibility to show that there could be both a call and put option feature in investment, in terms of options to expand or contract the capital stock in the future. Moreover, it should be noted that Hartman (1972) and Abel (1983) show counter to the above that where there is perfect competition and constant returns to scale as well as symmetric adjustment costs, an increase in uncertainty may also raise the value of a marginal unit of capital and hence the incentive to invest. Lee and Shin (2000) argue that the balance between the positive and negative effects of uncertainty may depend strongly on the labour share of firms' costs. ³ See Cuthbertson and Gasparro (1995) for empirical results on the significance of Tobin's Q in investment decisions in UK manufacturing and Sensenbrenner (1991) for evidence from 6 OECD countries. In particular, Cuthbertson and Gasparro find that although Tobin's Q is important for long run UK investment, it is not a sufficient statistic. Given these contrasting theoretical results, as well as ambiguity as to what variable best captures relevant uncertainty at a macro level, empirical work is vital. We now go on to review empirical methods and studies in terms of measures of uncertainty and their use in investment functions, before undertaking our own empirical work. ### 2.2 Measures of Uncertainty A choice of measures of volatility is needed in order to proxy for uncertainty in investment functions. In this study our main focus is on conditional-heteroscedastic GARCH measures. This section provides an overview of such measures, referring where appropriate to the past empirical literature on investment and uncertainty, which is surveyed on more detail in the following section. We conclude the section with arguments which favour our focus on GARCH. Conditional volatility measures take account of an estimated process for generating volatility (see, for example, Mandelbrot, 1963, Westerfield, 1977, Mussa, 1979, and Hsich, 1988). The basis of such measures is that empirical evidence suggests that short-run asset price and, possibly, inflation movements display distinctive features, being well-characterised by a random-walk model, where changes in prices are statistically independent and uncorrelated. This is in turn consistent with the weak form of the efficient markets hypothesis, where all information is freely available and incorporated in past prices, and hence the current price is the optimal predictor of the future one, subject to a constant "drift" parameter. But price changes also tend not to be characterised by constant volatility over time; instead tranquil periods tend to be followed by volatile ones. The unconditional distributions of price changes tend to be fat tailed or leptokurtic (relatively peaked and fat tailed) rather than normal. These movements are well suited to modeling by AutoRegressive Conditional Heteroskedastic (ARCH) methods. We firstly introduce Engle's (1983) original ARCH model before considering the more parsimonious Generalised ARCH (GARCH) model introduced by Bollerslev (1986). Following the seminal paper by Engle (1983) we shall refer to all discrete time
stochastic processes (ϵ_i) of the form $$\varepsilon_i = z_i \sqrt{\nu_i}$$ (10) $$id$$, $E(z_i) = 0$, $var(z_i) = 1$, (11) with $\sqrt{v_r}$ a time-varying, positive, measurable function of the time t-1 information set, as an ARCH model. By definition, ε_r is serially uncorrelated with mean zero, but the conditional variance of ε_i equals ν_b which may be changing through time. In most applications, and in ours, ε_i refers to the innovation in the mean for some other stochastic process, say $\{\nu_i\}$ where $$y_i = g(x_{i-1}; \beta) + \varepsilon_i$$ and $g(x_{r-1}; \beta)$ denotes a function of x_{r-1} and the parameter vector β , where x_{r-1} is in the time t-1 information set. Let $f(z_t)$ denote the density function for z_t , and θ be the vector of all the unknown parameters in the model. By the prediction error decomposition, the log-likelihood function for the sample ε_T , ε_{T_1} , ..., ε_1 becomes, apart from the initial conditions, $$L(\theta) = \sum_{i=1}^{r} \left[\log f(\varepsilon_i \nu_i^{-l/2}) - \log \sqrt{\nu_i} \right]$$ (13) The second term in the summation is the Jacobian term arising from the transformation from z_i to z_i . Note that (13) also defines the sample log-likelihood for y_T , $y_{T,1}$,..., y_I as given by (12). Given a parametric representation for $f(z_0)$, maximum likelihood estimates for the parameters of interest can be computed directly from (13) by a number of different numerical optimization techniques. In our example we estimated (13) using the maximum likelihood procedure described in Berndt et al. (1974). As suggested by Engle (1983), one possible parameterisation is to express v_i as a linear function of past squared values of the process $$\nu_{i} = \alpha_{o} + \sum_{i=1}^{4} \alpha_{i} \mathcal{E}_{i-1}^{2}$$ (14) where $\alpha_0 > 0$ and $\alpha_i \ge 0$. This model is known as the linear ARCH model. With financial and exchange rate data it captures the tendency for volatility clustering. Hence, to undertake the test, one regresses simultaneously the change in the log of the variable in question (unconditional distribution) on a constant, giving a "conditional mean" equation (12) for the change in the variable, while the variance of the errors of this equation (conditional distribution) is regressed on the lagged squared errors, the "conditional variance" equation (14), with the criterion of maximising a log-likelihood function. Given a coefficient on the lagged squared error in equation (14) greater than zero, volatility will tend to cluster, with large residuals following large ones and vice versa, but of unpredictable sign, while a random, normally-distributed variation in the conditional distribution (error variance) gives the unconditional distribution (error distribution) fatter tails than the normal distribution. [&]quot;This, of course, gives all errors the same sign. In many of the applications with the linear ARCH(q) model, a number of lags are required. An alternative and more flexible lag structure is often provided by the Generalised ARCH or GARCH(p,q) model in Bollerslev (1986), $$v_{i} = \alpha_{0} + \sum_{i=1}^{q} \alpha_{i} \varepsilon_{i-i}^{2} + \sum_{i=1}^{p} \beta_{i} v_{i-i}$$ (15) To ensure a well-defined process, all the parameters in the infinite order AR representation must be non-negative, where it is assumed that the roots of the polynomial lie outside the unit circle. For a GARCH(1,1) process this amounts to ensuring that both α_l and β_l are non-negative. It follows also that ϵ_l is covariance stationary if and only if $\alpha_l + \beta_l < 1$. Of course in that situation the GARCH(p,q) model corresponds exactly to an infinite order linear ARCH model with geometrically declining parameters. Using the coefficient β_I on the lagged dependent variable and setting the conditional variance constant, GARCH enables a long run response of the conditional variance to shocks to be calculated, as shown in equations (16) and (17). a_0 shows the mean level of volatility. Most of the studies in the literature, for stock returns, the term structure or exchange rates, have found a significant degree of both short and long run shock persistence with high frequency data, thus accounting for the clustering of volatility characteristic of such markets (Bollerslev et al. 1992). Studies of inflation have found similar results (Engel, 1983). $$(1-\beta_i)h_i = 0 + \alpha_i \varepsilon_i^2 \tag{16}$$ $$h_{i} = \alpha_{0} / (1 - \beta_{1}) + \alpha_{1} / (1 - \beta_{1}) \epsilon_{i}^{2}$$ (17) Bollerslev et al. (1992) suggest that in most applications a lag length of p=q=1 will suffice. For example, it has been found by Hsieh (1989a,b) that a simple GARCH(1,1) model did relatively well in describing the returns to five different daily nominal US Dollar rates and this is the model which we utilise in this study. Further refinements can be made to the specification. When there is autocorrelation in the residuals of a simple conditional mean equation as outlined above (entailing rejection of the random walk hypothesis for the variable), inclusion of lagged dependent variables is a possible way to ensure white noise errors, although it is of course contrary to the efficient markets hypothesis. Meanwhile, dummies can be used to test for seasonal effects (of particular importance in monthly price data), and the lagged variance term enables shocks to have a persistent effect on the variance over time. One could also use dummies for extreme observations, following the argument of Lamoureux and Lastrapes (1990) that otherwise the inclusion of such observations outside the normal sampling range might bias the coefficients. Strictly, in order for the system to be stable, the sum of $\alpha_i + \beta_i$ should be less than one. Some authors impose a constraint to ensure this (the IGARCH model). GARCH is our preferred approach to estimation of uncertainty effects on inflation. However, we note that there also exist traditional volatility measures used in testing uncertainty and investment which show variability without reference to the underlying process generating the volatility, although as noted they are conditional in the sense of taking recent history of volatility into account (e.g. via moving average processes). One such measure of volatility based on the variance (KR) is taken from Kenen and Rodrick (1986) and Darby et al. (1999) $$KR = \left[\frac{1}{8}\sum_{i=1}^{8}(\Delta \ln e_{i+i})\right]^{\frac{1}{2}}$$ (18) Volatility can also be derived using an autoregressive moving average model, the proxy being the standard deviation of the model's residuals, as in Goldberg (1993) and subsequent papers: $$ER_{i} = \alpha_{i}ER_{i-1} + \varepsilon_{i} + \beta_{i}\varepsilon_{i-1}$$ (19) Some authors such as Pindyck and Solimano (1993) also work with the moving average standard deviation (SD) of the relevant time series $$SD = \sqrt{\frac{n\sum e^{2} - (\sum e^{2})}{n(n-1)}}$$ (20) Justifying our focus on GARCH, we argue that the distinction between GARCH and moving average based volatility is a potentially important one, since heightened average volatility alone may merely reflect a greater incidence of random and independent shocks, i.e. greater risk, without a change in underlying perceptions as to the situation on the part of firms considering investment. On the other hand, heightened conditional volatility may indicate greater uncertainty⁶ on the part of the market regarding the direction of the variable and the intentions of the authorities, including market responses to shocks per se⁷ (an increased tendency for shocks to have persistent effects on the market) which may be more likely to affect In our research, reported below, the subperiods for estimation are chosen to eliminate the main outliers, i.e. ERM realignments; in practice even in the full sample, we found that dummying made little difference in most cases. The substitute of the properties of the substitute of the properties prope ⁶ In more detail, risk can be defined as the danger that a certain contingency will occur, a measure often related to future events susceptible to being reduced to objective probabilities, and uncertainty is a term applied to expectations of a future event to which probability analysis cannot be applied, such as a change in policy regime or a financial crisis (Shafer 1986). The response of an uncertain market – and the response of investment thereto - may appear out of scale with the proximate causes of a given stimulus, if it leads participants to change the way they form their decisions. ⁷ See also Kurz and Motolese (2001). investment. A similar point is made by Serven (2002), who considers use of GARCH essential to measure exchange rate uncertainty as opposed to "sample variability". ## 2.3 Modelling Investment and Uncertainty An extensive survey of the literature on investment and uncertainty is provided in Carruth et al. (2000b). Overall, they suggest there is a broad consensus that the effect from proxy measures of uncertainty on aggregate investment is negative. This is for a wide range of model types and various methods of uncertainty proxy. Our intention is not to repeat that survey, but rather to provide a thematic overview giving sufficient background for understanding of our results and possible contrasts with earlier studies, as well as to reference more recent work. First, there are issues in *choosing the variable to measure volatility*. It is argued in Carruth et al. (2000b) that use of stock market based measures may reveal cash flow uncertainty for the firm, but are not relevant indicators of future economic shocks and policy changes. Moreover, stock prices may be vulnerable to bubbles rather than reflecting fundamentals. For these reasons, macro variables such as price, output and exchange rate
volatility are often preferred instead. One could query this approach since share prices take into account all information relevant to the future profitability of the firm (or at a macro level the corporate sector). Furthermore, one can argue that investment is discounted by the long rate plus a risk premium, where the latter may be linked to equity market volatility (Davis and Madsen, 2001). Meanwhile macroeconomic proxies are generally partial – the exchange rate is most relevant to an exporting company for example, but less so to a producer of non-traded goods or services. Discussion of these issues in the literature is generally cursory. A further general issue arising across the different measures of volatility is the stationarity properties of the data. Pagan and Ullah (1988) point out that stationarity is a necessary condition to estimate the true variance of some underlying process when using moving averages. As Carruth et al. (2000b) point out, stationarity is not always pre-tested in investment studies; we do so in our work below. There is then the issue of how to measure volatility. Papers that have used ARCH or GARCH measures of macroeconomic variables when modelling investment include Huizinga (1993), Episcopes (1995) and Price (1995). Huizinga (1993) considers US inflation, real wages and real profits and generally finds a negative effect on investment. Episcopes (1995) examines US interest rates, stock market index, consumer spending and GDP deflator and again sees a negative impact on the growth of investment. Price (1995) utilises the conditional variance of the growth rate of GDP, and finds a negative effect on UK manufacturing investment lagged twice. The question of whether there is a different effect from forward and backward looking measures of uncertainty has been raised by Ferderer (1993). He attempts to produce a forward looking measure based on the risk premium from the term structure. For the US he finds that the effect on investment is negative. Driver and Moreton (1991) model uncertainty using the standard deviation across 12 forecasting teams of the output growth and inflation rate of in the next 12 months. They find a negative long-run effect from output growth on investment but no long-run effect from inflation on investment. Exchange rate volatility and the impact of related uncertainty on investment has been considered widely, for example in Goldberg (1993), Darby et al. (1999) and Darby et al. (2002). It is also an important focus of our work. Goldberg (1993) and Campa and Goldberg (1995) derived their measure of volatility from the standard errors of the residuals from a moving average representation of the exchange rate using US data. Looking at volatility and investment Darby et al. (1999) using a model based on Dixit and Pindyck (1994) suggest that there are situations where exchange rate uncertainty will depress investment and situations where it will not. In the empirical section of their paper Darby et al. (1999) find, using a neoclassical model and Tobin's Q, that exchange rate volatility measured by the Kenen-Rodrick (1986) approach noted above has a significant and negative impact on investment functions for the US, Germany and France. There are additional dynamic effects which are negative for Italy and the UK. There are negative misalignment effects for US, France, Italy and the UK. In contrast, there are short run positive dynamic effects for Germany, Italy and UK from misalignment (France suffers from positive dynamic volatility). On the basis of these results the authors suggest there are no long run benefits to UK and Italian investment from exchange rate stability. More recent work by Darby et al. (2002) concentrates on the impact of exchange rate misalignment on investment and find evidence of non-linearities and asymmetries. Also they use a different measure of uncertainty, which extracts the trend component of the real exchange rate before calculating volatility. They find that volatility in the US then has a positive effect. This underlines that the method of extracting volatility is important empirically. Further exchange rate studies include Nucci and Pozzolo (2001) who derive a theoretical model where permanent changes in the exchange rate are important for investment whilst changes in the transitory component are not. Recent work by Baum et al. (2001) suggest that it is difficult to identify the effect of volatility of the exchange rate on firms' profits, since the effect of a positive change will be different from a negative change. We accommodate this by incorporating income into our regression analysis: any effect of a permanent devaluation should feed through that variable. Serven (2002) using GARCH measures of uncertainty, finds a negative and highly significant impact of real exchange rate uncertainty on private investment in a sample of developing countries, after controlling for standard investment determinants. The impact is larger at higher levels of uncertainty – in line with analytical literature underscoring 'threshold effects'. Moreover, the investment effect of real exchange rate uncertainty is shaped by the degree of trade openness and financial development: higher openness and weaker financial systems are associated with a more significantly negative uncertainty- investment link. Some disaggregate studies, including Leahy and Whited (1996), Driver et al. (1996), Guiso and Parigi (1999) and Temple et al. (2001) also found negative effects of uncertainty on investment in at least some industries. For example Temple et al. (2001) found that UK industrial survey responses suggested external finance constraints and uncertainty about demand were factors limiting investment, but that the former depended on concentration in the industry. We suggest that there are a number of lacunae in the existing macro literature, that we shall seek to fill in the following sections. Studies tend to be for a single country, indicator and measurement method. Unlike the studies cited above, we look both across a range of indicators and measures of these indicators and in panels of the G7 countries. We now go on to describe the data and estimation of our own approach to investment and uncertainty. #### 3. Data For generating uncertainty proxies, we utilise monthly CPI data, long interest rates data, nominal and real effective exchange rate data, industrial production and the stock market index for the G7 countries over 1968-2001. These are obtained from Datastream. In terms of macroeconomic data needed for the investment function, we use quarterly data for the G7 countries, namely US, Canada, Japan, UK, Germany, France and Italy. Business investment, business sector output and the business sector capital stock data were taken primarily from the OECD business sector database. A key aspect of these definitions compared with aggregate private investment is that private sector aggregates include housing investment and the stock of housing, which has a different cyclical pattern. Moreover, the use of business sector data overcomes problems of transfer from public ownership by including business sector capital, investment and output regardless of sector of ownership. Data on the stock of equity at market prices in the non-financial corporate sector were constructed using the stock of outstanding assets and liabilities in the financial accounts published by the various national statistical agencies. The capital stock used in Tobin's Q is for the non-financial corporate sector and not the business sector, to ensure consistency with the equity stock. Details of the construction of all the variables used in the empirical estimation are included in the accompanying data appendix. We also provide more powerful unit root tests than simple OLS Dickey Fuller tests by adopting the strategy developed in Ng and Perron (2001). Extending work by Dufour and King (1991) and Elliot, Rothemborg and Stock (1996), Ng and Perron suggest local GLS detrending to unit root tests yield non-negligible size and power gains. The authors also propose a class of modified information criteria to choose the truncation lag of the tests. Taken together the two steps lead to unit tests with much improved size and power. We apply these methods to: Phillips and Perron's (1988) unit root tests with nonparametric modification to deal with serial correlation of errors; the Elliot, Rothemborg and Stock (1996) approach which derives the asymptotic power envelope for point optimal tests of a unit root; and the Augmented Dickey Fuller test. Full details of the tests are given in Table B in the Appendix. Business investment, In(IB) and business output are I(1), as are most of the times series in levels used in traditional specifications for investment. So, more surprisingly, is Tobin's Q over this relatively short sample. The volatility measures are also typically I(1) although there is consistent evidence that equity price and real exchange rate volatility measures are I(0). ### 4 Results In this section we consider the long run relationship between uncertainty and investment using Pesaran, Shin and Smith's (1999) Pooled Mean Group Estimator (PMGE) for dynamic heterogeneous panels. We examine our long run estimator in detail, then set out the overall specification chosen for investment. Also, we present our GARCH estimates of uncertainty volatility then go on to give details of our panel results for this variables impact on investment for the G7 countries. # 4.1 Pooled Mean Group Estimation of investment functions for the G7 We follow Bean (1981), Driver and Moreton (1991) and Darby et al. (1999) in estimating dynamic error correction models of investment including both short and long-run terms in average Q and the real user cost of capital and dynamic terms in output and investment. Consistent with these authors, we also include long-run terms in investment and output and test for homogeneity as implied by
the CES production function. Using this specification, we examine the effects of uncertainty on investment for our cross country sample using Pesaran, Shin and Smith's (1999) Pooled Mean Group Estimator (PMGE) for dynamic heterogeneous panel models. Panel methods have become popular in cross sectional macro data sets since they provide greater power that individual country studies and hence greater efficiency. Pesaran et al. emphasise that there are two traditional methods when estimating panel models: averaging and pooling. The former involves running N separate regressions and calculating coefficient means (see for example the Mean Group Estimator method suggested by Pesaran and Smith, 1995). A drawback to averaging is that it does not account for the fact that certain parameters may be equal over cross sections. Alternatively we could pool the data and assume that the slope coefficients and error variances are identical. Whereas there may be theoretical and empirical reasons to presume that the long-run coefficients are homogenous over the cross-section however there are very few practical cases in which the short-run dynamics and error variances would be homogeneous too. Pesaran et al. (1999) proposed the PMGE method, which is an intermediate case between the averaging and pooling methods of estimation and involves aspects of both. The PMGE method restricts the long-run coefficients to be equal over the cross-section, but allows for the short-run coefficients and error variances to differ across groups on the cross-section. We can obtain, therefore, pooled long-run coefficients and averaged short run dynamics as an indication of mean reversion. We use the PMGE method to estimate our investment functions. We also examine the estimated long-run adjustment parameters we obtain using the PMGE to consider the speed of adjustment at the panel level. The PMGE is based on an Autoregressive Distributive Lag ARDL(p,q,...,q) model $$y_{\mu} = \sum_{j=1}^{p} \lambda_{ij} y_{n-j} + \sum_{j=0}^{q} \delta_{ij}^{\prime} x_{n-j} + \mu_{i} + \varepsilon_{\mu}$$ (21) where \mathbf{x}_{μ} (kx1) is the vector of explanatory variables for group i, μ , represents the fixed effects the coefficients of the lagged dependent variables (λ_{μ}) are scalars and δ_{μ} are (kx1) coefficient vectors. T must be large enough so that the model can be estimated for each cross section. Equation (21) can be re-parameterised as: $$\Delta y_{ii} = \phi_i y_{ii-1} + \beta_i' \mathbf{x}_{ii} + \sum_{j=1}^{p-1} \lambda_{ij}^* \Delta y_{ii-j} + \sum_{j=0}^{p-1} \delta_{ij}^{-1} \Delta \mathbf{x}_{ii-j} + \mu_i + \epsilon_{ii}$$ (22) where $$\phi_i = -\left(1 - \sum_{j=1}^{p} \lambda_{ij}\right)$$, $\beta_i = \sum_{j=0}^{q} \delta_{ij}$, $\lambda_{ij}^* = -\sum_{m=j+1}^{p} \lambda_{im}$ and $\delta_{ij}^* = -\sum_{m=j+1}^{q} \delta_{im}$ In addition we assume that the residuals in (22) are i.i.d. with zero mean, variance greater than zero and finite fourth moments. Secondly, the roots of equation (22) must lie outside the unit circle. The latter assumption ensures that $\phi_i < 0$, and hence that there exist a long-run relationship between y_{ii} and x_{ii} defined by $$y_{ii} = -(\beta_i^r/\phi_i)\mathbf{x}_{ii} + \eta_{ii}$$ (23) The long-run homogeneous coefficient is equal to $\theta = \theta_1 = -(\beta_1'/\phi_1)$, which is the same across groups. The PMGE uses a maximum likelihood approach to estimate the model and a Newton-Raphson algorithm. The lag length for the model can be determined using, for instance, the Schwarz Bayesian Information Criteria. The estimated coefficients in the model are not dependent upon whether the variables are I(1) or I(0). The key feature of the PMGE is to make the long-run relationships homogenous while allowing for the heterogeneous dynamics and error variances. We also calculated the Mean Group (MGE) estimator, which is an average of the individual country coefficients. This provides consistent estimates of the mean of the long-run coefficients although they are inefficient if slope homogeneity holds. Under long-run homogeneity, PMG estimates are consistent and efficient. We test for long-run homogeneity using a joint Hausman test based on the null of equivalence between the PMG and MG estimation (see Pesaran, Smith and Im, 1996, for details). If we reject the null (obtain a probability value of less that 0.05), we reject homogeneity of our cross section's long run coefficients. Significant statistical difference between our two estimators would be indicative of panel misspecification. The likelihood ratio test for long run parameter heterogeneity is much more conventional in this setting and has homogeneity as the null hypothesis (see Hsiao, 1986). Table 1: Basic PMGE investment function | | ln(YB) Tobin's User | Tobin's | User | P. | ECM | Likelihood | LR | _ | |------|---------------------|---------|---------|---------|----------|--|-------------------|---| | | | 0 | Cost | Rate | | (Unrestricted) | Statistic | | | PMGE | 1.247 | 0.169 | -0.005 | | -0.089 | (A) | S - S S S S S S S | | | | (t=26.037) | (3.243) | (0,013) | | (6.550) | 1650.481 | 55.21 | | | MGE | 1.482 | 0.292 | 0.381 | | -0.117 | (1678.085) | [p=0.00] | | | | (6.757) | (0.375) | (0.319) | | (7.371) | | | | | PMGE | 1.346 | | -0.523 | | -0.083 | Statement of the statem | | | | | (24.047) | | (0.931) | | (6.543) | 1644.076 | 14.58 | | | MGE | 1.443 | | 0.120 | | -0.103 | (1651.366) | [0.28] | | | | (15.648) | | (0.191) | | (7.613) | | | | | PMGF | 1.258 | 0.171 | | 0.002 | -0.092 | | | | | | (26.526) | (3.286) | | (0.468) | (7.018) | 1653.400 | 39.23 | | | MGE | 1.218 | 0.380 | | 0.006 | -0.120 | (1673.014) | [0.00] | | | | (11.578) | (0.968) | | (0.994) | (7.158) | | | | | PMGE | 1.359 | | | -0.002 | -0.082 | | | | | | (24.150) | | | (0.385) | (6.608) | 1651.637 | 15.66 | | | MGE | 1.359 | | | -0.002 | -0.102 | (1659.466) | [0.21] | | | | (13.857) | | | (0.253) | (5.690) | | | | | PMGE | 1.247 | 0.166 | | | -0.091 | | | | | | (29.271) | (3.233) | | | (6.908) | 1653.317 | 25.54 | | | MGE | 1.250 | 0.388 | | | -0.103 | (1666.087) | [0.01] | | | | (10.998) | (0.743) | | | (6.043) | | | | | PMGE | 1.367 | - 25 | | | -0.082 | | 8 | | | | (24.610) | | | | (-6.461) | 1648.783 | 8.45 | | | MGE | 1.393 | | | | -0.092 | (1653.010) | [0.21] | | | | (18.322) | | | | (-5.818) | | | | | PMGE | | 8.948 | | | -0.010 | | | | | | | (5.554) | | | (-1.199) | 1484.742 | 12.87 | | | MGE | | 7.446 | | | -0.033 | (1491.177) | [0.05] | | | | | (1.688) | | | (-3.023) | 3 | | | Notes: Dependent variable Business Investment. PMGE is Pooled Mean Group Estimation. MGE is Mean Group Estimation. Sample period 1973Q1 to 1996Q4. Lag structure determined by Schwarz Bayesian Criteria. Hausman test for poolability is a test for the equivalence of PMGE and MGE. If the null hypothesis is accepted (i.e., p value greater than 0.05) we can accept homogeneity of cross sectional long run coefficients. T statistics are in purentheses. P-values in square brackets. Dynamic coefficients are reported in Table A2. Table 1, and dynamics are reported in Table A2. estimated dynamics, which differ markedly across countries. The basic equations are shown in Q and the user cost/real long interest rate. Following the discussion above, we also have freely relationship between business sector investment and output. We also assess the effect of Tobin's Our basic specification without uncertainty considers the long run equilibrium often the wrong sign and are always insignificant (this is consistent with Chirinko, 1993). statistic much larger than 1.96, irrespective of which others variable are included in the 5% significance level which suggests excluding this variable from our analysis.8 Given that the dispersion of country effects since the Likelihood Ratio test rejects long run homogeneity at the Tobin's Q is significant and positive in sign using the
PMGE. Nevertheless there is a degree of opportunity cost measures of investment - we tried user cost and long term interest rate - are specification. Also, the error correction term is always significant and negative. However, the From Table 1 the long-run coefficient on income is consistently significant with a t- study. A sensitivity analysis reintroducing Tobin's Q is noted in Section 4.4 below test with a test statistic of 8.45 (p-value = 0.21), and long run coefficients is significant for both most simple specification accepts both tests for poolability, in particular the Likelihood Ratio estimators we concentrate on the long run equilibrium relationship with income only in our panel Gasparro (1995) both find evidence that the null of income homogeneity is accepted, they also than two standard errors away from 1.00.9 Although Carruth et al. (2000a) and Cuthbertson and investment function, since the long run income coefficient reported in fourth bottom row is more rate) and increased capital mobility which has made fixed investment more sensitive It may also link to an increase in the depreciation rate (where the basic model assumes a constant post war period 10 and Davis and Madsen (2001) who note a sharp rise in the capital output ratio. who report evidence of increasing investment output ratios for the industrialised countries in the sample and hence more efficient estimated statistics. our results are consistent with Jones (1995) The fact that we have estimated coefficients in excess of one can be viewed as due to our wider Cuthbertson and Gasparro's preferred specification has an estimated coefficient greater than one report evidence where the estimated elasticity on income is greater than one. In particular, We cannot accept the hypothesis that the coefficient on income is equal to one in our ## 4.2 Deriving uncertainty measures using GARCH of GARCH estimation are shown in Tables 2 to 7 below exchange rates, industrial production, and differences of long rates as outlined above. The results changes in the log of monthly changes in inflation, equity prices, nominal and real effective Autoregressive Conditional Heteroskedasticity (GARCH) estimation of the properties of the Following the discussion above, to assess conditional volatility we used the Generalised at the 95% level, except for Italian inflation and Canadian industrial production. The conditional equations are all stationary, and the lags are sufficient to remove autocorrelation (using LM tests) long rates. All of the specifications are GARCH(1,1) except for the US equity price where a variance equations are all stable $(\alpha_i+\beta_i<1)$ other than the Italian exchange rate and Japanese Features of note include the following: The dependent variables of the conditional mean long run specification with a test statistic of 0.20 (p-value=0.90). As pointed out by Pesaran et al. (1999) it is often The Hausman test statistic suggests poolability when we incorporate only Business Output and Tobin's Q in our Ratio test. Indeed the Mean Group coefficient on Tobin's Q is always insignificant and individual OLS results (available on request) suggest that Tobin's Q is only significant for Canada and Japan. We do not incorporate further difficult to differentiate between panel specifications on the basis of this test unlike the less easily passed Likelihood results with Tobin's Q in this section of the paper Here our estimated equation is equation (24) below, excluding the uncertainty measure longer data period of over one hundred years. Our time series dimension is much shorter. We note that McGratten (1998) refutes this evidence of non-homogeneity of investment to output using a much Table 2: GARCH (1,1) for log-difference of monthly inflation | | UK | US | Germany | Japan | Canada | | France | |------------------------|-----------|-----------|-----------|-----------|--------|-----------|---------------------| | 00 | 0.17E-5 | 0.23E-6 | 0.38E-6 | 0.14E-5 | | 0.53E-6 | | | | (0.49E-5) | (0.53E-5) | (0.76E-5) | (0.62E-5) | 200 | (0.67E-5) | (0.67E-5) (0.13E-4) | | α_{l} | 0.470 | 0.275 | 0.071 | 0.200 | | 0.290 | | | 200 | (0.120) | (0.110) | (0.07) | (0.089) | | (0.150) | | | β | 0.510 | 0.716 | 0.864 | 0.742 | | 0.710 | | | | (0.070) | (0.074) | (0.064) | (0.071) | | (0.099) | | | $\alpha_i + \beta_i$ | 0.980 | 0.991 | 0.935 | 0.942 | | 1.000 | | | $\alpha_i/(1-\beta_i)$ | 0.959 | 0.968 | 0.522 | 0.775 | П | 1.000 | | | LM(12) in | 13.3 | 16.1 | 6.9 | 19.7 | | 12.8 | | | Con. Mean | [0.350] | [0.186] | [0.861] | [0.072] | | [0.383] | [0.383] [0.082] | | DF of dv | -8.9 | -11.8 | -13.4 | -14.4 | - 4 | -13.6 | | | ADF of dv | -5.9 | -8.5 | -10.3 | -12.3 | | -8.2 | | Notes: $\alpha_i + \beta_i$ gives an indication of stability and $\alpha_i/(1-\beta_i)$ of long run response. Standard errors are in parentheses. Probability values in square brackets. α_i is the coefficient on the lagged squared error term whilst β_i is the coefficient on the conditional variance term. Sample period: 1959M2-2001M11; UK Conditional mean equation includes 12 lags and monthly seasonal dummies, dv = dependent variable. Table 3 GARCH (1.1) for log-differ | | UK | US | Germany | Japan | Canada | France | Italy | |----------------------------|-----------|-----------|-----------|-----------|----------|----------|-----------| | α_o | 0.23E-4 | 0.65E-5 | 0.34E-4 | 0.24E-4 | 0.2E-4 | 0.43E-5 | 0.2E-4 | | | (0.59E-5) | (0.66E-5) | (0.54E-5) | (0.66E-5) | (0.6E-5) | (0.6E-5) | (0.56E-5) | | Q, | 0.326 | 0.119 | 0.160 | 801.0 | 0.107 | 0.267 | 0.808 | | 33 | (0.071) | (0.04) | (0.053) | (0.034) | (0.055) | (0.093) | (0.180) | | β_{i} | 0.635 | 0.863 | 0.510 | 0.850 | 0.684 | 0.736 | 0.364 | | 5 | (0.432) | (0.032) | (0.045) | (0.028) | (0.054) | (0.056) | (0.060) | | $\alpha_{i}+\beta_{i}$ | 0.961 | 0.982 | 0.67 | 0.958 | 0.791 | 1.003 | 1.172 | | $\alpha_{i}/(1-\beta_{i})$ | 0.893 | 0.869 | 0.327 | 0.720 | 0.339 | 1.011 | 1.270 | | LM(12) in | 5.8 | 1.6 | 11.8 | 16.1 | 12.8 | 14.4 | 5.6 | | Con. Mean | [0.926] | [0.698] | [0.463] | [0.188] | [0.385] | [0.276] | [0.937] | | DF of dv | -14.2 | -14.2 | -14.8 | -14.0 | -15.6 | -14.5 | -13.9 | | ADF of dv | -12.6 | -12.7 | -12.4 | -12.3 | -12.5 | -12.2 | -12.9 | | | UK | SU | Germany | Japan | Canada | France | Italy | |------------------------|-----------|-----------|-----------|----------|-----------|----------|----------| | R
R | 0.23E-3 | 0.36E-3 | 0.86E-4 | 0.29E-4 | 0.58E-3 | 0.11E-3 | 0.0011 | | | (0.52E-4) | (0.82E-4) | (0.14E-4) | (0.4E-4) | (0.17E-3) | (0.1E-4) | (0.4E-3) | | Q _I | 0.126 | 0.195 | 0.091 | 0.073 | 0.110* | 0.078 | 0.17 | | 11 | (0.044) | (0.059) | (0.046) | (0.098) | (0.065) | (0.03) | (0.072) | | β, | 0.814 | 0.650 | 0.889 | 0.918 | 0.648 | 0.893 | 0.606 | | 1000 | (0.037) | (0.063) | (0.033) | (0.061) | (0.099) | (0.023) | (0.123) | | $\alpha_i + \beta_i$ | 0.940 | 0.845 | 0.980 | 166.0 | 0.758 | 0.971 | 0.776 | | $\alpha_i/(1-\beta_i)$ | 0.677 | 0.557 | 0.820 | 0.890 | 0.313 | 0.729 | 0.431 | | LM(12) in | 10.1 | 6.8 | 14.3 | 9.7 | 13.9 | 19.1 | 8.4 | | Con. Mean | [0.611] | [0.870] | [0.281] | [0.639] | [0.306] | [0.086] | [0.750] | | DF of dv | -19.6 | -17.9 | -18.8 | -18.5 | -18.0 | -18.3 | -18.0 | | ADF of dv | -14.2 | -14.8 | -13.7 | -12.7 | -14.2 | -14.4 | -13.2 | 1968M8-2001M11 for the UK and US. Conditional mean equation includes 3 lags (6 lags for US). The US has a GARCH(3.3) Table 5 GARCH (1,1) for log-difference of monthly industrial production | | UK | US | Germany | Japan | Canada | France | Italy | |------------------------|-----------|-----------|-----------|---------|---------|---------|--------| | Q | 0.67E-4 | 0.17E-4 | 0.002 | 1.314 | 0.025 | 0.001 | 0.0 | | s | (0.58E-5) | (0.52E-5) | (0.58E-5) | (0.238) | (0.021) | (0.008) | (0.02) | | α_{l} | 0.730 | 0.398 | 0.13 | 0.297 | 0.060 | 0.037 | 0.0 | | | (0.14) | (0.13) | (0.05) | (0.085) | (0.028) | (0.017) | (0.0) | | β_{l} | 0.095 | 0.328 | n/a | -0.083 | 0.917 | 0.960 | 0.9 | | | (0.056) | (0.082) | | (0.111) | (0.036) | (0.020) | (0.0) | | $\alpha_i + \beta_i$ | 0.825 | 0.726 | 0.13 | 0.214 | 0.977 | 0.997 | 0.99 | | $\alpha_i/(1-\beta_i)$ | 0.81 | 0.6 | 0.13 | 0.27 | 0.723 | 0.925 | 0.8 | | LM(12) in | 16.4 | 12.2 | 6.3 | 12.6 | 25.3 | 17.3 | 10.9 | | Con. Mean | [0.175] | [0.428] | (0.9) | [0.4] | [0.013] | [0.138] | 0.541 | | DF of dv | -23.6 | -12.9 | -29.4 | -24.2 | -21.8 | -16.4 | -29 | | ADF of dv | -16.4 | -9.2 | -18.6 | -12.7 | -12.9 | -27.2 | -18.6 | Notes: see Table 2. Conditional mean equation includes Germany 3 lags (sample period 1969M2-2001M6), Japan 4 lags (sample 1969M2 to 2001M6), France 12 lags (sample 1969M2 to 2001M6), Canada 4 lags (sample 1969M2 to 2001M6), Italy 6 lags (Sample 1970M6-2001M12), dv = dependent variable. Table 6 GARCH (1,1) for difference of long interest rates | 2 | UK | SU | Germany | Japan | Canada | | + | |------------------------|----------|---------|---------|---------|--------|---------|-------------| | Q | 0.0002 | 0.003 | 0.004 | 0.003 | | 0.005 | - | | - Company | (0.0007) | (0.002) | (0.002) | (0.001) | | (0.002) | | | α_I | 0.060 | 0.123 | 0.117 | 0.495 | | 0.231 | | | | (0.020) | (0.036) | (0.044) | (0.109) | | (0.064) | | | β, | 0.938 | 0.845 | 0.795 | 0.599 | | 0.751 | | | 10000 | (0.021) | (0.043) | (0.066) | (0.058) | | (0.058) | | | $\alpha_i + \beta_i$ | 0.998 | 0.968 | 0.912 | 1.094 | | 0.982 | - | | $\alpha_i/(1-\beta_i)$ | 0.968 | 0.794 | 0.571 | 1.234 | | 0.928 | 0.928 0.805 | | LM(12) in | | 18.969 | 13.743 | 17.883 | | 15.717 | | | Con. Mean | | [0.089] | [0.317] | [0.119] | | [0.205] | | | DF of dv | | -14.2 | -12.6 | -17.3 | | -18.4 | | | ADF of dv | | -14.6 | -11.6 | -13.7 | - 1 | -14.1 | - | Notes: See Table 2 Conditional mean equation includes 3 lags for ftaly (sample 1968M4 to 2001M10), Germany (sample 1968M4 to 2001M10), France (sample 1968M5 to 2001M11), Japan 2 lags (sample 1970M1 to 1999M12), Canada 6 lags
(sample 1968M7 to 2001M10), UK 6 lags (sample 1968M7 to 2001M10). Table 7 GARCH (1,1) for difference of log of real exchange rate | - | -12.0 | -12.1 | -14.3 | -11.0 | -1117 | | ***** | |---|---------|---------|---------|---------|---------|---------|------------------------| | 7 | 130 | 101 | -172 | 211.8 | -1114 | -117 | ADF of dv | | | -14.4 | -16.1 | -13.4 | -13.8 | -14.2 | -12.8 | DF of dv | | | [0.108] | [0.557] | [0.486] | [0.855] | [0.12] | [0.14] | Con. Mean | | | 18.3 | 10.7 | 11.5 | 7.0 | 17.9 | 17.2 | LM(12) in | | | 0.619 | 0.292 | 0.468 | 0.374 | 0.683 | 0.55 | $\alpha_i/(1-\beta_i)$ | | 7 | 0.73 | 0.671 | 0.901 | 0.801 | 0.95 | 0.785 | $\alpha_i + \beta_i$ | | | (0.201) | (0.34) | (0.088) | (0.13) | (0.057) | (0.136) | | | | 0.292 | 0.535 | 0.814 | 0.682 | 0.842 | 0.522 | β_i | | | (0.165) | (0.09) | (0.047) | (0.047) | (0.045) | (0.079) | | | | 0.438 | 0.137 | 0.087 | 0.119 | 0.108 | 0.263 | α, | | | (0.15) | (0.31) | (0.36) | (0.11) | (0.055) | (0.335) | | | | 0.33 | 0.36 | 0.552 | 0.20 | 0.11 | 0.73 | α_0 | | | France | Canada | Japan | Germany | SO | UK | | Sample 1970M5-2000M9 except Japan (1971M12-2000M9), Canada (1971M2-2000M9) and UK (1972M5-2000M9). GARCH(3,3) specification was the simplest acceptable by the data, and German and Japanese industrial production where a simple ARCH with one lag was sufficient. As noted in the tables, we included monthly seasonals for the log difference of the CPI, given it has a marked seasonal pattern, while for the other series we did not include them. Virtually all of the lagged error α_i and lagged variance β_i terms are significant, with the lagged variance tending to be larger, while the results are more mixed for the baseline level of volatility α_0 . In the inflation equations (In Table 2), the lagged error term is not significant in Germany and France, which particularly for the former may link to long term counter inflation credibility and corresponding action on the part of the central bank. The lagged error term is large in the UK, US and Canada. The baseline level of volatility (constant in the conditional variance equation) is not significant in the price equations. In the nominal effective exchange rate equations (see Table 3), the lagged variance term is not significant in the UK, although that country has a large lagged error term suggesting short run persistence of volatility. As noted, in Italy the equation has a very large lagged error term and is unstable. The baseline level of volatility is not significant in the exchange rate for the US and France. The long run response to shocks is low in Germany and Canada. In the equity price equations (see Table 4), the lagged error term in Canada is not significant, nor is the constant for Japan. The equations are generally quite comparable across countries, expect the US where three months lags are taken on the lagged error and lagged variance terms. With the exception of Italy, the long run response to shocks is lower in the US, UK and Canada, perhaps due to their more active and liquid equity markets, than in the Continental countries and Japan. In the industrial production equations (Table 5), only the simplest form of ARCH estimation was feasible for Germany, while for Japan the lagged variance term is not significantly different from zero, again implying an ARCH type process. Meanwhile. although we also estimated levels equations, we focus on results for differences of long rates (Table 6), given the stationarity tests suggest that within sample a number of the long rates are non stationary, consistent with other research (see Bo and Sterken, 2002). Figure 1 Measures of Uncertainty for UK NEER Notes: GARCH is Generalised AutoRegressive Conditional Heteroscedasticity, SD is Standard deviation and KR is Kenen and Rodrick. Finally the real exchange rate results, which in a sense mix the volatility of inflation and the nominal exchange rate, are all well-behaved and are shown in Table 7. Note that the variable is scaled up by 100 to facilitate convergence in the GARCH. Besides GARCH results on stationary difference variables (denoted CV), in Appendix C we also report results using the Kenen-Rodrick measure (KR) of variance, and the rolling standard deviation (SD) on differences of the variables, so as to cover the range of specifications used in the literature, see Section 2.2. As noted, these measures do not allow for ARCH effects but instead measure average volatility over a moving window. Figure 1 illustrates the difference between the three measures for UK exchange rate volatility. Although the levels of the measures are not the same their profile through time is very similar, with the major shocks impacting upon each of the measures at the same time. Also, we should note that the GARCH measure exhibits a reasonably constant mean over the entire sample period. Further GARCH measures are shown in the Charts D1-D2 in Appendix D. ### 4.3 Panel Estimation Results We turn now to an assessment of uncertainty effects on investment. Table 8 show the results for PMG estimation of our investment functions using conditional volatility of the log-difference of the nominal effective exchange rate (DER), equity prices (DEQ) industrial production (DIP), consumer price (DP) and the long interest rate (DLR), and the real exchange rate (DRER) estimated using GARCH as set out in Section 4.2. In each of the tables we present estimated long run coefficients of business output, ln(YB), estimated error correction terms, the Likelihood Ratio and Hausman statistics. 23 χ^2) examine panel heterogeneity. The LR statistic always suggests that homogeneity is not a The Likelihood Ratio (LR) test statistic and the Hausman test statistic (both distributed as typically accepts poolability in the Pesaran et al. study). We focus on the LR test in the following can be considered a much more stringent test for poolability than the Hausman test (which reasonable assumption in the Pesaran et al. (1999) study of aggregate consumption and, as such, Table 8 presents the estimated long run coefficients and short run error correction term | l'able 8 Pane | PMGE | MGE | |------------------------------|-------------------|--------------------|-------------------|-------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | ln(YB) | 1.346
(24.944) | 1.439
(11.637) | 1.377
(26.591) | 1.466
(13.144) | 1.363 (24.610) | 1.370
(15.647) | 1.348 (27.205) | 1.413 (14.931) | 1.348 (30.071) | 1.390 (18.593) | 1.371 (24.720) | 1.439 | | CV(DER) | -8.018
(2.887) | -25.198
(2.097) | | | , | (10.011) | (2/12/00) | (111751) | (30,071) | (10.393) | (24.720) | (14.031) | | CV(DEQ) | | | 0.374 (0.585) | -0.758
(0.362) | | | | | | | | | | CV(DP) | | | | | -6.863
(0.787) | -22.596
(1.069) | | | | | | | | CV(DIP) | | | | | | | -0.067
(-1.189) | 11.629
(0.817) | | | | | | CV(DLR) | | | | | | | | | 0.020 (0.302) | 0.076 (0.680) | | | | CV(DRER) | | | | | | | | | | | -0.094
(-2.780) | -0.256
(-1.547) | | Error
Correction | -0.077
(5.270) | -0.083
(4.431) | -0.084
(6.403) | -0.095
(4.926) | -0.079
(6.244) | -0.093
(6.132) | -0.083
(-6.241) | -0.095
(-5.544) | -0.086
(-6.510) | -0.112
(-5.553) | -0.078
(-5.661) | -0.081
(-4.429) | | Likelihood
(Unrestricted) | 1652
(1667 | 252
613) | 1649
(1655 | .147 | 1645
(1654 | 5707010 | | 1.533
1.573) | 1646 | .737 · | 1651 | .887 | | LR Statistic | 30.72
[p=0 | | 18.18 | | 14.38 | | 10.08 | {12}
61] | 21.83 | {12} | 30.41 | | | Hausman
χ² {df} | 3.44
[0.1 | [8] | 1.39
[0.: | {12}
50] | 1.47 | {12}
[8] | 1.64 | {12} | 0.50 | {12} | 2.18 | {12} | Notes: Dependent variable Business Investment. PMGE is Pooled Mean Group Estimation. MGE is Mean Group Estimation. Sample period 1973Q1 to 1996Q4. T statistics are in parentheses. P-values are in brackets. The lag structure is determined by the Schwarz Bayesian Criteria. The LR Statistic is a likelihood ratio test for the null hypothesis of poolability. Hausman test for poolability is a test for the equivalence of PMGE and MGE. If the null hypothesis is accepted (i.e. p-value greater than 0.05) we can accept homogeneity of cross sectional long run coefficients. CV(.) is the conditional variance from GARCH estimation. DER is the first difference of the nominal effective exchange rate. DEQ the first difference of the stock exchange index. DP is the first difference of the price index. DIP is the first difference of industrial production. DLR is the first difference of the long interest rate. DRER is the first difference of the real effective exchange rate. The long run elasticities on output are always significant (t-statistics are greater than 1.96) and $\Delta \ln(IB)_{ii} = \phi_i \left(\ln(IB)_{ii-1} - \theta_{0i} - \theta_1 \ln(YB)_{ii} - \theta_2 CV()_{ii} \right) + \sum_{j=1}^{p} \delta_{jj} \Delta \ln(IB)_{ij-j} + \sum_{j=0}^{q} \phi_{jj} \Delta \ln(YB)_{ij-j} + \sum_{j=0}^{p} \gamma_{jj} \Delta CV()_{ij-j} + \varepsilon_{1i}$ (24) from the following equation: variables, although we do not find evidence that this is statistically significant across the G7. and of inflation, CV(DP)) suggest that there is often a negative effect from uncertainty of these GARCH measure of the volatility of equity prices, CV(DEQ), industrial production, CV(DIP), effects are actually comparable in magnitude). The other measures shown in Table 8 (i.e. of nominal and real exchange rate uncertainty are significant in influencing long-run business (note that the latter is scaled up by 100 to aid convergence of the GARCH estimates, so the investment across the G7 with a PMG estimated clasticity of -8.018 and -0.094 respectively In terms of the measures of volatility, we find for the entire sample period that only the
measure correction terms are significant and give evidence of mean reversion to a long-run relationship. the estimated coefficients are again slightly larger than one in magnitude. Also, the error only. Instead, we pursue the issue of poolability of the exchange rate results by splitting our on poolability but place greater emphasis on the Hausman test, thus focusing on the G7 result = 30.72 and 30.41, whilst the critical value is 21.03). tests for equity prices, industrial production and inflation. However, we can not accept paramete this test there is parameter homogeneity across the G7 as a whole. This is also true for the LR (1995), Lee et al. (1997) and Pesaran et al. (1999) that it is important to consider whether there is homogeneity for the LR test for nominal and real exchange rate uncertainty (test statistic χ^2 (12) of equivalence of PMG and MG that it always accepts (p-value > 0.05) and hence, according to estimated standard errors. We see from the probability values associated with the Hausman test our results. In particular, it may bias our estimated coefficients and reduce the efficiency of the panel heterogeneity. This potential characteristic of our cross section can affect the usefulness of It is emphasised in the panel econometries literature developed in Pesaran and Smith At this point we could conclude that there is a difference between the two test statistics 24 sample. One possible poolable combination for the nominal exchange rate, according to the Joint LR statistic, can be obtained by combining Germany and France with the UK and Italy (Table | ln(YB) | PMGE | MGE
1.439 | PMGE
1.233 | PMGE MGE PMGE Ind
 LR LR LR LR LR LR LR LR | |--------------------|---------------------|-------------------|--------------------|--| | ln(YB) | 1.346
(t=24.944) | 1.439
(11.637) | 1.233
(21.371) | 1.202
(63.534) | | CV(DER) | -8.018 | -25.198 | | | | 9 | (188.2) | (2.097) | | | | CV(DER)
EU4 | | | -11.808
(3.312) | -12.670
(2.852) | | CV(DER) | | | | | | CV(DER) | | | | | | Germany | | | | | | CV(DER) | | | | | | Italy | | | | | | CV(DER) | | | | | | UK | | | | | | Error | -0.077 | -0.083 | -0.094 | -0.097 | | Correction | (5.270) | (4.431) | (3.855) | (4.578) | | Joint LR Statistic | 30.72 (12) | (12) | 4.19 | 4.19 (6) | | x² (df) | [p=0.00] | .001 | [0. | [0.65] | | Hausman | 3.44 (12) | (12) | n.a. | a. | | 7 (dD | [0.18] | 8 | | | Notes: EU4 consists of France, Germany, Italy and the UK. Also see Table 8. T-statistics in parentheses. Standard Errors in <--, Probability values in square brackets. | Hausman
y² {df} | Joint LR Statistic 30 χ^2 {df} | Error -0.078 Correction (5.661) | CV(DRER)
UK | CV(DRER)
Italy | Germany | CV(DRER)
France | CV(DRER)
EU4 | G7 -0.094
G7 (2.780) | ln(YB) 1.371 (24.720) | PMGE MGE PMGE MGE | |--------------------|-------------------------------------|---------------------------------|----------------|-------------------|---------|--------------------|---------------------|-------------------------|-----------------------|---| | 2.18
[0.34] | 30.41 {12}
[p=0.00] | -0.081
(4.429) | | | | | | | 1.439 (14.851) | MGE | | | 3.34
[0. | n.a.‡ | | | | | -0.134
(3.232) | | 1.265
(21.711) | PMGE | | n.a. | 3.343 [6]
[0.76] | n.a.‡ | | | | | -0.136
(-3.522) | | 1.253
(35.919) | MGE | | | | | | 4 | | | 2.132 (3)
[0.55] | | 0.868 (3)
[p=0.83] | Individual
LR Statistic
X ² {df} | Notes: EU4 consists of France, Germany, Italy and the UK. Also see Table 8. Standard Errors in <- † This is due to a problem with an Italian dynamic lag length greater than one. Reducing the maximum lag length to one, reduced the pooled coefficient to -0.142 without changing the individual country results for the other countries. as does the significance, to -11.808 (t=3.312). We also find a greater speed of mean reversion to to the pooled estimate on the variability of the nominal effective exchange rate. 1112 pooled output coefficient. The UK and Italy are however marginally closer to zero than they are the equilibrium relationship. We also undertook individual country estimates with and without a individually is accepted by the LR statistic. In this instance the uncertainty coefficient increases 9A) LR Statistic = 4.19 {d.f.=6} [p-value = 0.65]. Pooling each of the two coefficients extent by the real or nominal exchange rate. Although there are reasons to believe that the exchange rate for real investment decisions nominal exchange rate is important, the consensus opinion emphasises the importance of the real The question arises whether firm investment behaviour is likely to be influenced to a greater zero it is also less that two standard errors from the pooled result and closer to the pooled result although Italy is only -0.056. Although the UK coefficient is less than two standard errors from panel results from pooling In (YB), provides interesting results. In this instance the pooled 9B) we find that the UK estimated coefficient from a single equation OLS regression or from a coefficient was equal to -0.134 and, for individual countries, the coefficient for the UK is -0.089 However, when we examine the results based on the real effective exchange rate (Table ### 4.4 Sensitivity Analysis estimation results for the entire sample. In the latter period, hedging was more common. This "irrelevant") and possibly greater capital mobility. the later period, (although note that the Modigliani-Miller theorem implies that this should be may be balanced by greater reliance on external as opposed to internal finance for investment in time or indeed whether other types of volatility have important effects which are submerged in whether the importance of nominal exchange rate volatility has increased or diminished over and also estimating the uncertainty coefficient recursively. By this means, we can examine stability of our estimates across time. We do so by splitting our sample period in the early 1980s To assess the robustness of our results, we considered it important to examine the The estimated coefficient on uncertainty measured by the nominal exchange rate for Italy and the UK are -5.573 and -5.120, respectively. The results for Japanese, Canadian and US nominal exchange rate uncertainty's impact on investment suggest we can not pool this sub-group, with a LR statistic of 15.52 [p-value = 0.00]. | able 10 Pan | PMGE | MGE | |----------------------------|--------------------|---------------------|--------------------|--------------------|--------------------|-------------------|--------------------|--------------------|--------------------|-----------------------|-------------------|--------------------| | In(YB) | 1.412 | 1.121 (4.256) | 1.446 (10.837) | 1.140
(3.378) | 1.444
(12.217) | 1.473
(6.381) | 1.574
(11.845) | 1.219
(6.541) | 1.436
(10.787) | 1.324
(4.874) | 1.421
(10.424) | (4.329) | | CV(DER) | -5.164
(-1.803) | -13.144
(-1.325) | | | | | | | | | | | | CV(DEQ) | | | -0.317
(-0.412) | 4.300
(0.890) | | | | | | | | | | CV(DP) | | | - A | | -0.990
(-0.198) | 17.526
(1.318) | | | | | | | | CV(DIP) | | | | | | | 6.437
(1.994) | 35.891
(1.025) | | | | | | CV(DLR) | | | | | | | | | 0.108
(0.982) | -0.134
(-0.755) | | | | CV(DRER) | | | | | | | | | , | | -0.041
(1.480) | -0.044
(-0.632) | | Error
Correction | -0.115
(-2.855) | -0.083
(4.431) | -0.120
(-3.034) | -0.197
(-2.285) | -0.079
(6.244) | -0.093
(6.132) | -0.072
(-1.680) | -0.212
(-2.276) | -0.123
(-3.053) | -0.213
(-2.589) | -0.119
(2.939) | -0.210
(2.632) | | LR Statistic χ^2 {df} | 34.65 | 5 (12) | 29.01 | {12}
00] | 22.8 | 3 {12}
03 | | 2 {12}
00] | [0. | 2 {12 }
03] | [0. | 4 {12}
.00 | | Hausman
χ^2 {df} | 6.88 | {12}
.03] | 1.21 | {12}
55] | | {12}
32] | | 7 {12}
.00] | | {12}
20] | | {12}
.61] | | Hausman
χ^2 (df) | | {12}
.50) | | {12}
.25] | | {12}
.76] | | .03] | | 25] | | 67] | |------------------------------------|---------------------|---------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|--------------------|-----------------------------|-------------------|----------------------------| | LR Statistic
\(\chi^2 \{ df \} | [p = | 0.11] | [0. | 9 {12} | [0. | 00] | [0. | 0 {12}
.00]
 | [0. | 00]
{12} | [0. | 00]
{12} | | Error
Correction | -0.084
(6.403) | -0.095
(4.926) | -0.043
(-1.807) | -0.098
(-3.904) | -0.039
(-1.740) | -0.091
(-3.454) | -0.028
(-1.198) | -0.093
(-3.775) | -0.082
(-4.510) | -0.091
(-3.269)
7{12} | -0.036
(2.535) | -0.078
(3.174
4 {12} | | CV(DRER) | | | | | | | | | | | -0.452
(2.361) | -0.960
(1.330 | | CV(DLR) | | | | | | | | | -0.227
(-2.268) | 0.359
(0.292) | | | | CV(DIP) | | | | | | | -9.056
(-0.958) | -24.541
(-0.436) | | | | | | CV(DP) | | | | | 19.001
(1.032) | 41.121
(0.285) | | | | | | | | CV(DEQ) | | | 0.673
(0.499) | -3.271
(-1.195) | | | | | | | | | | CV(DER) | -41.593
(-2.422) | -49.053
(-1.904) | | | | | | | | | | k | | ln(YB) | 1.150
(9.811) | 1.562
(2.841) | 0.765
(3.953) | 1.098
(1.979) | 2.227
(7.062) | 2.049
(2.398) | 0.611
(0.248) | 2.382
(1.892) | 1.158
(12.919) | 2.897
(2.028) | 1.131
(8.578) | (1.739) | | | PMGE | MGE | PMGE | MGE | PMGE | MGE | PMGE | MUE | 1 to 1996
PMGE | MOL | PMGE | MGE | 27 1983 1985 1987 1989 1991 1993 1995 coefficients are closer to 1.0 in the later sample, in the case of exchange rates and long rates. 2.42). There are similar changes in the real rate coefficient. We note also that the income rate increases in both magnitude and significance (the coefficient becomes
-41.59, t-statistic = variability. In the earlier sample period, 1973Q1 to 1983Q4, exchange rate volatility only has a and provide some interesting effects from exchange rate, and to a lesser extent long interest rate, (t-statistic = -1.80). However, for the later period the effect from the nominal effective exchange significant effect on investment at the 10% significance level: the estimated coefficient is -5.16 The results from splitting the time series span into two sub samples (Tables 10 and 11) 28 These results are confirmed by the recursively estimated coefficients (and standard error bands) on the impact of exchange rate volatility in Figure 2 and 3.¹³ From the charts we see exchange rate volatility becoming more important when we incorporate more recent data into our sample period. For some of the earlier periods there does not appear to be a strongly negative coefficient. But as we move into the 1990s the coefficient decreases further below zero (approximately by a factor of two). Another explanation may be that firms are less sensitive to exchange rates when they are in a situation of imperfect competition. In the second half of the sample, financial liberalisation, anti trust policy, privatisation and other forms of market opening have been much more marked. The resulting increased contestability may underlie the shifting coefficient. Overall, our results suggest that volatility effects are still present, indeed more important in the 1990s than the 1970s; and although this is mainly restricted to the exchange rate it also emerges for the difference of the long rate. Indeed, there is evidence of homogeneity of the long run coefficients for the later period using both the Hausman test and the Likelihood Ratio test when we incorporate exchange rate volatility into our long run specification (Table 11, columns 2 and 3). The industrialised countries' macroeconomic structures with respect to investment, openness and the exchange rate volatility are, this result suggests, becoming increasingly similar. This may again link to increased product market liberalisation, capital mobility and market efficiency. The tests on poolability are time dependent, since the estimated statistic from the recursive sample period often has a probability value greater than 0.05. The G7 results for the volatility of Industrial Production gives us some indication in the carlier period that there is a significant positive effect on investment in the long run. However, we discount this result here since the estimated coefficient is only marginally significant, the error correction term is insignificant at the 5% level (suggesting the absence of a long run relationship between investment and uncertainty) and there is no evidence of poolability from either the LR or Hausman statistic. Table 12 Panel estimates for Long Interest Rates: European Countries later Panel | Hausman
χ^2 (df) | χ² (df) | I D Company | Correction | French | CV(DP)
GN, IT & UK | CV(DP)
GN, IT & FR | GN & IT | CV(DLR) | FR, GN, IT & UK | CV(DLR) | G7 | CV(DLR) | | In(YB) | | |--------------------------|---------|-------------|------------|--------|-----------------------|-----------------------|----------|---------|-----------------|---------|----------|---------|----------|--------|------| | 2.79 (12)
[0.25] | [0.00] | 45.00 | (4.510) | -0.087 | | | | | | | (-2.268) | -0.227 | (12.919) | 1.158 | PMGE | | {12}
25] | [0.00] | 100 | (-3.269) | -0.001 | | | | | | | (0.292) | 0.359 | (2.028) | 2.897 | MGE | | 1.25 | 10. | 3 | (-8.340) | 890.0 | | | | | (-1.114) | -0.215 | | | (5.049) | 0.876 | PMGE | | 1.25 (12)
[0.54] | [0.00] | | (4.268) | -0.078 | | | | | (0.969) | 1.630 | | | (1.820) | 1.495 | MGE | | | 0] | | (4.560) | -0 101 | | | (-2.026) | -0.473 | | | | | (9.487) | 1.105 | PMGE | | Na | [0.37] | 7 (7) | (-11.409) | 50105 | | | (4.938) | -0.511 | | | | | (5.286) | 1.288 | MGE | | Na | [0.01] | | (-11.701) | -0.076 | | -0.242
(-1.254) | | | | | | | (5.033) | 0.879 | PMGE | | a | 01] | | (-3.142) | 080.0 | | -0.014
(-0.028) | | | | | | | (1.424) | 0.767 | MGE | | - | 10. | | (-2.709) | 5 077 | -0.452
(-2.023) | | | | | | | | (9.584) | 1.106 | PMGE | | Na | [0.05] | | (-7.332) | 2000 | 1.847
(0.783) | | | | | | | | (2.576) | 2.085 | MGE | ores: Sample period 1984Q1-1996Q4, see Table 8 With regards to the long-run interest rate, the estimated coefficient in the later period is significant at the 5% level and negative (-0.227). Although we have a reasonable specification (e.g. a significant error correction term) panel poolability is rejected using the LR test statistic, and only accepted with the less stringent Hausman test. Consequently we consider whether it is possible to split the cross section sample in Table 12. Germany and Italy appear to behave similarly with regard long-run interest rate volatility. This is shown by the likelihood ratio statistic, which is insignificant by a large margin when we combine these two countries. Our results are somewhat surprising since Italy is typically considered as an economic "outsider" with regard to Monetary Union, see for example the evidence from Darby et al. (1999). In this instance it is clearly exhibiting similar behaviour to the largest European country. We do not find such clear evidence for combined significance and poolability for France or the UK with regards the volatility of long interest rates. But if anything the evidence sides with the UK exhibiting relatively (i.e. compared to France) similar behaviour to Italy and Germany. The LR statistic is borderline significant at the 5% level and uncertainty is having a negative effect, with a coefficient of -0.452. We seek to calibrate the impact of uncertainty on investment in the context of the successful results highlighted above. These are shown in Table 13. It can be seen that a 10% rise in the level of volatility relative to the average leads to a fall in investment of 1-1.5% except in the case of the later period exchange rate coefficient (5%) and the long rate for the G7 in the late: sample (0.7%). Using the standard deviation of volatility as a benchmark, a 1 standard deviation rise in conditional volatility leads to a 2-4% fall in investment for the full sample G7 exchange ¹³ We believe our approach to recursive estimation of PMGE is highly appropriate for testing the stability of coefficients in a panel data study. For recent innovations in testing for structural breaks in panel data see Kao and Table 13: Impact of increased uncertainty on investment | Sample | Variable | Average
level of C.V. | Coefficient | Base | 10% rise | - | 1 std dev 50% rise | |-----------|---------------------------------|--------------------------|-------------|--------|----------|--------|----------------------| | 1973-1996 | G7 nominal exchange rate | 0.013 | -8.018 | -0.107 | | -0.011 | -0.011 -0.037 | | 1973-1996 | EU4 nominal exchange rate | 0.012 | -11.800 | -0.146 | | -0.015 | -0.015 -0.070 | | 1973-1996 | \overline{a} | 1.41 | -0.094 | -0.133 | | -0.013 | -0.013 -0.035 | | 1973-1996 | 1973-1996 EU real exchange rate | 1.27 | -0.134 | -0.171 | | -0.017 | -0.017 -0.064 | | 1984-1996 | 6 G7 nominal exchange rate | 0.013 | -41.600 | -0.534 | | -0.053 | -0.053 -0.202 | | 1984-1996 | G7 long rate | 0.311 | -0.227 | -0.074 | | -0.007 | -0.007 -0.021 | | 1984-1996 | 1984-1996 EU3 long rate | 0.298 | -0.452 | -0.144 | 2.5 | -0.014 | -0.014 -0.035 | sample. Since the investment function is specified in logs, 0.01 is equivalent to a 1% change. rate and both the long rate estimates. In the case of the EU exchange rate the effect is 7%, and 20% for the G7 exchange rate in the later sample. shown in Appendix Table E2. Table E1). Second, we removed the time means from the equations presented in Table 8. This is Whited (1996) that uncertainty proxies may be irrelevant in the presence of Q (Appendix E we introduced Tobin's Q to the same equations, to test the empirical finding of Leahy and Two further experiments were undertaken to test the robustness of the main results. First we find evidence that we can pool the G7 countries using the stronger Likelihood Ratio test means, this again does little to the results. The size of coefficients is reduced somewhat but estimates are also negative in all cases, albeit insignificant. As regards the removal of time effective exchange rate remain significant in the PMG estimates. Interestingly, all the other around 0.16 in all of the PMG estimates. When including Tobin's Q, the nominal and real Broadly speaking, the results do not controvert our main findings. Q is significant at ### 5. Conclusions Equally, for some countries EMU may also reduce long rate volatility (given, for example, a will reduce trade-weighted exchange rate volatility, EMU is indicated to favour investment including the UK, to reduce exchange rate and long rate volatility. Since it is likely that EMU the implications for EMU, the panel results suggest it is of benefit for all the large EU countries. variables have a major and consistent negative effect on investment across the G7. As regards for inflation, equity prices and industrial production do not, in contrast, suggest that these effect also emerges for major EU countries other than France over the 1984-96 period. Results all subsamples. There is evidence of a growing exchange rate effect over the sample. A long rate conditional volatility from GARCH estimates, is harmful to investment, both for the G7 and for would compound the beneficial effect deeper and more liquid bond market, lower fiscal deficits and less volatile short rates). This The panel results show unequivocally that exchange rate uncertainty as measured by ### References Abel, A. (1980) Empirical investment equations: An integrative framework. Carnegie-Rochester Conference Series on Public Policy 12, 39-91. Abel, A. (1983) Optimal investment under uncertainty. American Economic Review 73, 228-233 Abel, A.,
Dixit, A., Eberly, J.C., Pindyck, R.S. (1996) Options, the value of capital and investment. Quarterly Journal of Economics 111, 753-777. Andrews, D.W.K. and Lu, B. (2000) Consistent Model and Moment Selection Criteria for GMM Estimation with Application to Dynamic Panel Data Models. Yale University, Working Paper No. 1233. Asteriou, D., Price, S. (2000) Uncertainty, investment and economic growth: evidence from a dynamic panel. City University mimeo. Baillie R.T., Bollerslev T. (1989) The message in daily exchange rates - a conditional variance tale. Journal of Business and Economic Statistics, 297-305. Baum, C.F., Caglayan, M., Barkoulas, J.T. (2001) Exchange rate uncertainty and firm profitability. Journal of Bean, C. (1981) An econometric model of manufacturing investment in the UK. Economic Journal 91, 106-121. Blackburn, K. and Pelloni, A. (2001) On the relationship between growth and volatility in learning-by-doing economics, University of Manchester, mimeo. Bollerslev, T (1986) Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics 31, 307- Bollerslev, T. (1990) Modelling the coherence in short run nominal exchange rates: A multivariate generalised ARCH model, Review of Economics and Statistics 72, 498-505. Bollerslev T., Chou R.Y., Kroner, K. F. (1992) ARCH modelling in finance. Journal of Econometrics 52, 5-59. Brainard, W.C., Tobin, J. (1968) Pitfalls in financial model building. American Economic Review 58, 99-122. Brunner, A.D. (1992) Conditional asymmetries in real GNP: A seminonparametric approach. Journal of Business Economics and Statistics 10, 65-72. Woodford, Elsevier Science. Caballero, R. (1999) Aggregate Investment, in Handbook of Macroeconomics Vol. 1, Eds. J.B. Taylor and M. Campa, J.M., Goldberg, L.S. (1995) Investment in manufacturing, exchange rates and external exposure. Journal of Carruth, A., Dickerson, A., Henley, A. (2000a) Econometric modelling of UK aggregate investment: The role of profits and uncertainty. *The Manchester School* 68, 276-300. International Economics 38, 297-320. Carruth A., Dickerson A., Henley, A. (2000b) What do we know about investment under uncertainty? Journal of Economic Surveys 14, 119-153. Chirinko, R. (1993) Business fixed investment spending: Modelling strategies, empirical results, and policy implications. *Journal of Economic Literature* XXXI, 1875-1911. Cooper, R., Ejarque, J. (2001) Exhuming Q: Market power versus capital market imperfections, NBER Working Cuthbertson, K., Gasparro, D. (1995) Fixed investment decisions in UK manufacturing: The importance of Tobin's Q, output and debt. European Economic Review 39, 919-941. of investment. Economic Journal 109, C55-C67 Darby, J., Hughes Hallett, A., Ireland, J., Piscatelli, L. (1999) The impact of exchange rate uncertainty on the level business sector investment. University of Strathelyde, mimeo. Darby, J., Hughes Hallett, A., Ireland, J., Piscatelli, L. (2002) Exchange rate uncertainty, price misalignments and Brunel University Department of Economics and Finance Working Paper No 01-12. Davis, E.P., Madsen, J. (2001) Productivity and Equity Returns: A Century of Evidence for 9 OECD Countries Dixit, A., Pindyck, R.S. (1994) Investment under Uncertainty. Princeton University Press Driver, C., Moreton, D. (1991) The influence of uncertainty on aggregate spending. Economic Journal 101, 1452- Driver, C., Moreton, D. (1992) Investment, Expectations and Uncertainty. Oxford, Basil Blackwell Driver, C., Yip, P., Dakhil, N. (1996) Large company capital formation and effects of market share turbulence: micro-data evidence from the PIMS database. Applied Economics 28, 641-651. Dufour, J.M., King, M. (1991) Optimal invariant tests for the autocorrelation coefficient in linear regressions with stationary and nonstationary errors. Journal of Econometrics 47, 115-143. Elliott, G., Rothemborg, T.J., Stock, J.H. (1996) Efficient tests for an autoregressive unit root. Econometrica 64, 813-836. Engle, R.F. (1983) Estimates of the variance of US inflation based upon the ARCH model. Journal of Money Credit and Banking 15, 286-301. Episcopes, A. (1995) Evidence on the relationship between uncertainty and aggregate investment. Quarterly Journal of Economics and Finance 35, 41-52. Favero, C.A., Pesaran M-H., Sharma, S. (1994) A duration model of irreversible investment, theory and empirical evidence. *Journal of Applied Econometrics* 9, 895-8112. Ferderer, J.P. (1992) The impact of uncertainty on aggregate investment spending: an empirical analysis. *Journal of Money Credit and Banking* 25, 30-48. Goldberg, L.S. (1993) Exchange rates and investment in United States Industry. Review of Economics and Statistics 75, 575-589. Guiso, L., Parigi, G. (1989) Investment and demand uncertainty. The Quarterly Journal of Economics 114, 185-227. Hartman, R. (1972) The effect of price and cost uncertainty on investment. Journal of Economic Theory 5, 258-266. Hayashi, F. (1982) Tobin's marginal Q and average Q: A neo-classical interpretation. Econometrica 50, 213-24. Hsich, D. A. (1988) The statistical properties of daily exchange rates 1974-1983. Journal of International Hsieh, D. A. (1989a) Testing for non-linear dependencies in daily foreign exchange rates. *Journal of Business* 62, 25-43. Hsieh, D. A. (1989b) Modeling heteroskedasticity in daily foreign exchange rates. Journal of Business and Economic Statistics 7, 307-17. Hsiao, C. (1986) Analysis of Panel Data. Cambridge University Press, Cambridge. Huizinga, H. (1993) Inflation uncertainty, relative price uncertainty and investment in US manufacturing. Journal of Money, Credit and Banking 25, 521-554. Jones, C. (1995) Time series tests of endogenous growth models. Quarterly Journal of Economics 110, 495-525. Jorgensen, D.W. (1963) Capital theory and investment behaviour. American Economic Review 53, 247-259. Kao, C., Chiang, M-H. (2000) Testing for Structural Change of a Cointegrated Regression in Panel Data. Syracuse, mimeo. Kenen, P., Rodrick, D. (1986) Measuring and analyzing the effects of short-term volatility in real exchange rates. Review of Economics and Statistics 68, 311-9. Kneller, R., Young, G (2000) Business cycle volatility, uncertainty and long-run growth. The Manchester School. Kurz, M., Motolese, M. (2001) Endogenous uncertainty and market volatility. Economic Theory 17, 497-544. Lamoureux, C.G., Lastrapes, W.D. (1990) Persistence in variance, structural change and the GARCH model Journal of Business and Statistics 8, 225-234. Lee, J., Shin, K. (2001) The role of variable input in the relationship between investment and uncertainty. American Economic Review 90, 667-680. Leahy, I., Whited, T. (1996) The effects of uncertainty on investment: Some stylised facts. Journal of Money, Credit and Banking 28, 64-83. Lucas, R.E., Prescott, E.C. (1971) Investment under uncertainty. Econometrica 39, 659-81. McGratten, E. (1998) A defense of AK growth models. Federal Reserve Bank of Minneapolis Quarterly Review 22(4), 13-27. Mandelbrot, B. (1963) The variation of certain speculative prices. Journal of Business 36, 394-419. Mussa, M. (1979) Empirical regularities in the behavior of the exchange rates and theories of the foreign exchange market. Carnegie Rochester Conference Series on Public Policy 11, 9-57. Ng, S., Perron, P. (2001) Lag length selection and the construction of unit root tests with good size and power. Econometrica 69, 1519-1554. Nucci, F., Pozzolo, A.F. (2001) Investment and the exchange rate: An analysis with firm-level panel data. European Economic Review 45, 259-83. Pagan, A., Ullah, A. (1988) The econometric analysis of models with risk terms. Journal of Applied Econometrics 3, 87-106. Perron, P., Ng, S. (1996) Useful modifications to unit root tests with dependent errors and their local asymptotic properties. Review of Economic Studies 63, 435-465. Pesaran, M.H. Shin, Y., Smith, R. (1999) Pooled Mean Group estimation of dynamic heterogeneous Panels. *Journal of American Statistical Association* 94, 621-634. Pesaran, M.H., Smith, R. (1995) Estimating long-run relationships from dynamic heterogeneous panels. *Journal of Econometrics* 68, 79-113. Personand M.H. Smith, P. Jan. W. S. (1995) Dynamic linear models for heterogeneous panels. In L. Matvas and P. Pesaran, M.H., Smith, R., Im, K-S. (1996) Dynamic linear models for heterogeneous panels. In L. Matyas and P. Sevestre (eds.) The Econometrics of Panel Data, Kluwer Academic Publishers. Pindyck, R.S., Solimano, A. (1993) Economic instability and aggregate investment, NBER Macroeconomics Annual, 259-303. Phillips, P.C.B., Perron, P. (1988) Testing for a unit root in time series regression. Biometrika 71, 599-607. Price, S. (1995) Aggregate uncertainty, capacity utilization and manufacturing investment. Applied Economics 27, 177-184. Sensenbrenner, G. (1991) Aggregate investment, the stock market, and the Q model - robust results for six OECD countries. *European Economic Review* 35, 769-825. Serven, L. (2002) Real exchange rate uncertainty and private investment in developing countries, forthcoming, Review of Economics and Statistics. Shafer, J.R. (1986) Managing crises in the emerging financial landscape. OECD Economic Studies, 8: 56-77. Temple, P., Urga, G., Driver, C. (2001) The influence of uncertainty on investment in the UK: A macro or micro phenomenon? Scottish Journal of Political Economy 48, 361-82. Tobin, J. (1969) A general equilibrium approach to monetary theory. Journal of Money. Credit and Banking 1, 15-29. Westerfield, R (1977) The distribution of common stock price changes: An application of transactions time and subordinated stochastic models. *Journal of Financial and Quantitative Analysis* 12, 743-65. #### Appendix A: Results including dynamics Table A1: G7 Basic Investment Functions: OLS Results | | US1 | Canada ² | France ³ | Germany ⁴ | Italy ⁵ | Japan ⁶ | UK ⁷ | MGE | |--|----------------------
---------------------|---------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------| | Error Correction | -0.054
(t=-2.101) | -0.117
(-3.649), | -0.080
(-3.221) | -0.148
(-3.549) ₁ | -0.051
(-2.018) ₁ | -0.057
(-2.892) ₁ | -0.140
(-2.899) ₁ | -0.092
(-5.818) | | ln(YB) | 1.353
(27.491) | 1.790
(11.051) | 1.449
(9.015) | 1.255
(17.210) | 1.180
(3.380) | 1.447
(12.701) | 1.278
(9.139) | 1.393
(18.322) | | Sigma - | 0.016 | 0.034 | 0.016 | 0.020 | 0.019 | 0.012 | 0.033 | | | LL | 257.33 | 185.10 | 264.55 | 238.46 | 241.19 | 274.91 | 190.06 | | | \overline{R}^{2} | 0.56 | 0.19 | 0.58 | 0.59 | 0.54 | 0.60 | 0.07 | | | LM ₄ Test: $\chi^2(4)$
CV = 9.49 | 6.13 | 2.43 | 1.63 | 0.02 | 0.01 | 0.39 | 0.45 | | | Normality: $\chi^{2}(2)$
CV = 5.99 | 0.55 | 0.58 | 1.85 | 6.50 | 15.77 | 6.49 | 2.97 | | | Hetero: $\chi^2(1)$
CV = 3.84 | 0.56 | 0.85 | 0.13 | 0.01 | 0.03 | 0.32 | 1.35 | | | ARDL | (3,1) | (3,0) | (1,1) | (1,1) | (2,1) | (2,3) | (1,0) | | | Din(IB)(-1) | 0.279 | 0.181 | | | 0.310
(3.997) | 0.200
(2.300) | | 0.139
(2.679) | | Din(IB)(-2) | 0.232
(2.873) | 0.211 (2.167) | | | 782757 (1757 | | | 0.063
(1.547) | | Dln(YB) | 1.081 (6.178) | | 2.505
(10.241) | 1.640
(9.745) | 1.453
(6.515) | 1.155
(7.448) | | 1.119
(3.307) | | Dln(YB)(-1) | ,,, | | | | | 0.099
(0.520) | | 0.014
(1.000) | | Din(YB)(-2) | | | | | | 0.757
(5.230) | | 0.108
(1.000) | | Inpt | -0.413
(-2.018) | -1.437
(-3.1147) | -0.711
(-3.631) | -0.857
(-2.929) | -0.291
(-1.039) | -0.595
(-3.727) | -0.956
(-2.727) | -0.751
(-5.205) | Notes: Dependent variable is Alib. T-statistics are presented in parentheses. Subscripts to parentheses are lag length of variables. Probabilities for diagnostic tests are presented in squared brackets. Variable definitions are included in the data appendix. 1. We have a balanced panel data set 1973Q1 to 1996Q4. Max lag length (3,3). Individual lag length is determined by the Schwarz Bayesian Information Criteria. Hausman test on poolability 0.20 [p-value = 0.65]. Likelihood Ratio 8.45 [p-value = 0.21]. Table A2: G7 Basic Investment Functions: PMGE Results | | US1 | Canada ² | France ³ | Germany⁴ | Italy ⁵ | Japan ⁶ | UK' | PMGE | |--|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------| | Error Correction | -0.053
(t=-2.101) ₁ | -0.078
(-2.939) ₁ | -0.086
(-3.860) ₁ | -0.126
(-3.210) ₁ | -0.041
(-3.005) ₁ | -0.064
(-3.567) ₁ | -0.126
(-2.991) ₁ | -0.082
(-6.461) | | In(yb) | 1.367
(27.491) | 1.367
(27.491) | 1.367
(27.491) | 1.367
(27.491) | 1,367
(27,491) | 1.367
(27.491) | 1.367
(27.491) | 1.367
(27.491) | | Sigma | 0.016 | 0.035 | 0.016 | 0.021 | 0.019 | 0.012 | 0.033 | | | LL | 257.33 | 182.72 | 264.55 | 236.40 | 239.93 | 281.88 | 189.46 | | | \overline{R}^{2} | 0.56 | 0.15 | 0.55 | 0.58 | 0.53 | 0.66 | 0.07 | | | LM ₄ Test: $\chi^2(4)$
CV = 9.49 | 6.13 | 1.28 | 1.38 | 0.04 | 0.01 | 0.45 | 0.58 | | | Normality: χ ² (2)
CV = 5.99 | 0.53 | 0.46 | 2.33 | 3.96 | 14.01 | 7.14 | 3.43 | | | Hetero: $\chi^2(1)$
CV = 3.84 | 0.55 | 0.00 | 0.09 | 0.11 | 0.02 | 0.30 | 1.01 | | | ARDL | (3,1) | (3,0) | (1,1) | (1,1) | (2,1) | (2,3) | (1,0) | | | Dln(IB)(-1) | 0.278 (3.559) | 0.182 | | | 0.302
(4.118) | 0.215
(2.604) | | 0.140
(2.710) | | Dln(IB)(-2) | 0.231
(2.983) | 0.195
(2.020) | | | | | | 0.061
(1.542) | | Din(YB) | 1.084 | | 2.4847
(10.465) | 1.633
(9.809) | 1.485
(7.224) | 1.132
(7.651) | | 1.117
(3.315) | | Dln(YB)(-1) | 15 | | | 1 | | 0.071
(0.393) | | 0.010
(1.000) | | Dln(YB)(-2) | | | | | | 0.750
(5.375) | | 0.107
(1. 0 00) | | Inpt | -0.416
(-2.139) | -0.526
(-2.710) | -0.086
(-3.860) | -0.938
(-3.284) | -0.401
(-3.039) | -0.565
(-3.736) | -1.008
(-3.003) | -0.644
(-7.058 | ### Appendix B: Data Appendix ### Unit Root Tests It is well know that Dickey Fuller unit root type tests have low power, hence Phillips and Perron (1988) propose a nonparametric modification to deal with serial correlation of errors in these tests, required to produce consistent estimation of the equation variance. In Phillips Perron large negative test statistics reject the null hypothesis of unit root. However, Schwert (1989) suggests that there may be substantial size distortions in finite samples when the data generation process has a predominance of negative autocorrelations in first difference. ADF tests may require a substantial lag to deal with moving average errors, hence have low degrees of freedom and low power. Perron and Ng (1996), following Stock (1990, unpublished), suggest three modified tests to deal with size distortions when the residuals have negative serial correlation. Perron and Ng utilise an autoregressive spectral density estimator. They use local asymptotic analysis to explain why other estimators yield no improvement. Perron and Ng show that their test maintains good power whilst correcting for the moving average errors encountered in most macroeconomic series. Furthermore Ng and Perron (2001) suggest utilising GLS detrending to their modified tests estimating the spectral density at frequency zero, yielding non-negligible size and power gains. Elliot, Rothemborg and Stock (1996) derive the asymptotic power envelope for point optimal tests of a unit root. Tests are second best when uniformly point optimal tests do not exist. Pt(0.5) has a power function tangential to the power envelope at one point and never too far below the envelope. DF-GLS is one that has the limiting power function close to that of the Pt(0.5) test. Dufour and King (1991) suggest that local detrending using GLS yields substantial power gains. Throughout we utilise the Ng and Perron (2001) method for choosing the lag length. BIC and AIC are not sufficiently flexible for unit root tests. In particular, a modified AIC approach produces unit root tests with much improved size and power. MAIC with GLS and M class have good size and power. The MAIC is also useful for DF-GLS. However Phillips and Perron (GLS) still has high size distortions even when using MAIC. Table B: Unit Root Tests Summary | ln(IB) | I(1) | ŒQ | I(1) | I() | (1) I | JP | I(I) | |----------------------|--------------|--------------|------|--------------|--------------|--------------|--------------| | ln(IB)* | I(1) | I(1) | I(1) | I (1) | I (1) | I(1) | I(1) | | ln(YB) | I(1) | I(1) | I(1) | I (1) | I(1) | I(1) | I (1) | | h(YB)* | I(1) | I(1) | I(1) | I (1) | I(1) | I(1) | <u>.</u> | | Tobin's Q | I(1) | I(1) | I(1) | I (1) | I (1) | I (1) | (<u>1</u>) | | Tobin's Q* | I(1) | User Cost | I(1) | I(1) | I(1) | I (1) | I (1) | I (1) | <u>[]</u> | | User Cost* | I(1) | I(1) | I(1) | I (1) | I (1) | I (1) | I(1) | | Long Rate | I(1) | I(1) | I(1) | I(0) | I (1) | I (1) | (E) | | Long Rate* | I(1) | I(1) | I(1) | I (1) | I (1) | I (1) | (I)I | | CV(NEER) | I(1) | I(1) | I(1) | I(1) | I(1) | I (1) | I(0) | | CV(NEER)* | I(1) | I(0) | I(0) | I (1) | I (1) | I (1) | I(0) | | CV(Inflation) | I(1) | I(1) | I(1) | I(0) | I(1) | I(1) | (I) | | CV(Inflation)* | I(0) | I(0) | I(1) | I(1) | I (1) | I (1) | (I)I | | CV(Equity Prices) | I(0) | I(1) | I(0) | I(0) | I(0) | I(0) | I(0) | | CV(Equity Prices)* | I(0) | I(1) | I(1) | I(1) | I(0) | I(0) | I(0) | | CV(Industrial Prod) | I(1) | I(1) | I(1) | I(1) | I (1) | I (1) | I(0) | | CV(Industrial Prod)* | I(1) | I(1) | I(1) | I(1) | I (1) | I (1) | (I)I | | CV(REER) | I(0) | 1(0) | I(1) | I(0) | (1)I | I (1) | I(0) | | CV(REER)* | I(1) | I(0) | I(1) | I(1) | I (1) | I (1) | I(0) | | CV(Long Rate) | I(0) | I(0) | I(1) | I(0) | I(1) | I (1) | I(1) | | CV(Long Rate)* | I (1) | I (1) | I(1) | I(0) | I(0) | I(0) | I (1) | Notes: Sample period 1973Q1 to 1996Q4. Asterisk (*) indicates trend in unit root specification. CV(.) is the conditional variance from GARCH estimation. | Table B1 | Canada | Unit | Root | Tests | Trend | Included | |----------|--------|------|------|-------|-------|----------| |----------|--------|------|------|-------|-------|----------| | | k | Alpha-hat | MZa | MZt | MSB | ERS Pt | M Pt | DF-GLS | |-----------|-------------------|-----------|---------|--------|-------|--------|--------|--------| | In(IB) | 2 | 0.943 | -10.374 | -2.260 | 0.218 | 9.921 | 8.869 | -2.194 | | In(YB) | 1 | 0.945 | -9.864 | -2.198 | 0.223 | 9.917 | 9.341 | -2.210 | | 0 | 4 | 0.948 | -10.069 | -2.239 | 0.222 | 10.809 | 9.075 | -2.065 | | User Cost | 0 | 0.936 | -5.639 | -1.675 | 0.297 | 19.664 | 16.152 | -1.812 | | Long Rate | i | 0.960 | -5.108 | -1.467 | 0.287 | 19.417 | 17.291 | -1.422 | | CV(DP) | 0 | 0.588 | -31.060 | -3.940 | 0.127 | 2.934 | 2.937 | -4.966 | | CV(DER) | 0 | 0.463 | -37.212 | -4.295 | 0.115 | 2.694 | 2.553 | -5.884 | | CV(DEQ) | 9 | 0.637 | -5.456 | -1.649 | 0.302 | 17.671 | 16.695 | -2.222 | | CV(DIP) | 0 | 0.873 | -11.259 | -2.363 | 0.210 | 8.379 | 8.142 | -2.537 | | CV(DLR) | 0 | 0.879 | -10.737 | -2.309 | 0.215 | 8.800 | 8.529 | -2.471 | | CV(RER) | 4 | 0.422 | -26.382 | -3.631 | 0.138 | 3.442 | 3.461 | -3.448 | | SD(DP) | 0 | 0.867 | -11.756 | -2.422 | 0.206 | 7.626 | 7.763 | -2.595 | | SD(DER) | 9 | 0.853 | -9.766 | -2.208 | 0.226 | 10.094 | 9.337 | -2.145 | | SD(DEQ) | 8 | 0.891 | -10.359 | -2.222 | 0.215 | 9.455 | 9.056 | -2.016 | | SD(DLR) | 1 |
0.932 | -8.686 | -2.059 | 0.237 | 11.046 | 10.585 | -2,087 | | V(DP) | 8 | 0.960 | -3.510 | -1.322 | 0.377 | 27.965 | 25.920 | -1.287 | | V(DER) | 8 | 0.882 | -8.520 | -2.062 | 0.242 | 11.461 | 10.703 | -2.064 | | V(DEQ) | 8 | 0.921 | -6.492 | -1.743 | 0.268 | 14.739 | 14.056 | -1.805 | | V(DLR) | 9 | 0.939 | -44.530 | -4.705 | 0.106 | 2.167 | 2.117 | -2.375 | | 1,020, | 5% Critical Value | | -17.3 | -2.91 | 0.168 | 5.48 | 5.48 | -2.901 | Table B2 Table Canada Unit Root Tests | Table B2 Table C | k | alpha-hat | MZa | MZt | MSB | ERS Pt | M Pt | DF-GLS | |------------------|-------------------|-----------|---------|--------|-------|---------|--------|--------| | ln(IB) | 3 | 1.006 | 0.819 | 0.685 | 0.836 | 68.204 | 49.147 | 0.874 | | ln(YB) | 3 | 1.005 | 1.267 | 1.371 | 1.082 | 114.525 | 84.843 | 1.346 | | 0 | 4 | 0.963 | -6.715 | -1.816 | 0.270 | 3.824 | 3.707 | -1.762 | | User Cost | 0 | 0.985 | -1.405 | -0.696 | 0.496 | 14.503 | 14.181 | -0.708 | | Long Rate | 1 | 0.970 | -3.780 | -1.353 | 0.358 | 7.674 | 6.495 | -1.332 | | CV(DP) | ii. | 0.898 | -1.833 | -0.858 | 0.468 | 14.343 | 12.099 | -0.984 | | CV(DER) | 7 | 0.861 | -2.502 | -1.108 | 0.443 | 12.042 | 9.737 | -1.470 | | CV(DEQ) | 9 | 0.731 | -3.325 | -1.259 | 0.379 | 8.153 | 7.348 | -1.977 | | CV(DIP) | 0 | 0.959 | -3.753 | -1.162 | 0.310 | 7.346 | 6.641 | -1.201 | | CV(DLR) | 0 | 0.907 | -8.393 | -2.037 | 0.243 | 3.460 | 2.963 | -2.151 | | CV(RER) | 6 | 0.597 | -11.775 | -2.419 | 0.205 | 2.241 | 2.110 | -2.508 | | SD(DP) | 0 | 0.896 | -9.300 | -2.092 | 0.225 | 3.190 | 2.889 | -2.215 | | SD(DER) | 9 | 0.933 | -3.561 | -1.274 | 0.358 | 8.760 | 6.884 | -1.287 | | SD(DEQ) | 8 | 0.912 | -7.369 | -1.884 | 0.256 | 3.571 | 3.458 | -1.874 | | SD(DLR) | 1 | 0.947 | -6.687 | -1.827 | 0.273 | 4.242 | 3.668 | -1.850 | | V(DP) | 9 | 0.990 | -1.264 | -0.610 | 0.482 | 19.531 | 14.252 | -0.545 | | V(DER) | - 8 | 0.950 | -3.261 | -1.211 | 0.371 | 9.492 | 7.454 | -1.168 | | V(DEQ) | 8 | 0.938 | -4.717 | -1.517 | 0.322 | 5.621 | 5.236 | -1.688 | | V(DLR) | 9 | 0.953 | -21.706 | -3.294 | 0.152 | 1.234 | 1.130 | -2.113 | | · (DDII) | 5% Critical Value | | -8.1 | -1.98 | 0.233 | 3.17 | 3.17 | -1.98 | Notes: K is the lag length determined by MAIC. Sample period 1973Q1 1996Q1. Alpha-hat is the estimated autoregressive coefficient. All variables have been detrended by GLS for both the statistic and spectral density. Estimated statistics in bold indicate stationarity. MZa and MZt are Modified Phillips-Perron tests. MSB is Modified Sargan-Bhargava test. ERS Pt is the Elliot, Rothemberg and Stock (easible point optimal test. M Pt is the modified point optimal test. DF-GLS is the Augmented Dickey Fuller test. Table B3 France Unit Root Tests Trend Included | Table D3 France | k | alpha-hat | MZa | MZt | MSB | ERS Pt | M Pt | DF-GLS | |-----------------|-------------------|-----------|---------|--------|-------|--------|--------|--------| | In(IB) | o o | 0.965 | -3.161 | -1.238 | 0.392 | 30.981 | 28.389 | -1.309 | | In(YB) | 2 | 0.942 | -11.029 | -2.231 | 0.202 | 9.347 | 8.855 | -2.003 | | 0 | 6 | 0.980 | -1.227 | -0.641 | 0.523 | 64.417 | 54.514 | -0.708 | | User Cost | 0 | 0.924 | -6.777 | -1.753 | 0.259 | 14.986 | 13.530 | -1.866 | | Long Rate | i | 0.972 | -5.403 | -1.553 | 0.288 | 19.084 | 16.598 | -1.495 | | CV(DP) | 11 | 0.868 | -2.993 | -1.123 | 0.375 | 27.622 | 27.912 | -1.466 | | CV(DER) | 0 | 0.547 | -33.260 | -4.075 | 0.123 | 2.717 | 2.755 | -5.269 | | CV(DEQ) | 0 | 0.838 | -14.063 | -2.599 | 0.185 | 7.172 | 6.788 | -2.848 | | CV(DIP) | 3 | 0.967 | -3.333 | -1.276 | 0.383 | 36.283 | 27.030 | -1.230 | | CV(DLR) | 4 | 0.868 | -7.132 | -1.861 | 0.261 | 14.655 | 12.823 | -1.898 | | CV(RER) | - 11 | 0.582 | -2.357 | -1.085 | 0.461 | 39.778 | 38.660 | -1.679 | | SD(DP) | 0 | 0.870 | -11.298 | -2.377 | 0.210 | 9.614 | 8.066 | -2,594 | | SD(DER) | 8 | 0.895 | -5.685 | -1.681 | 0.296 | 18.757 | 16.020 | -2.048 | | SD(DEQ) | 8 | 0.836 | -14.857 | -2.673 | 0.180 | 6.657 | 6.448 | -2.063 | | SD(DLR) | i | 0.913 | -19.279 | -3.090 | 0.160 | 5.167 | 4.817 | -3.118 | | V(DP) | 8 | 0.932 | -1.390 | -0.829 | 0.597 | 83.631 | 65.015 | -2.108 | | V(DER) | 8 | 0.926 | -4.157 | -1.441 | 0.347 | 25.602 | 21.920 | -1.697 | | V(DEQ) | 8 | 0.919 | -5,940 | -1.632 | 0.275 | 15.560 | 15.238 | -1.609 | | V(DLR) | 12 | 0.941 | -3.857 | -1.259 | 0.326 | 23.838 | 21.969 | -1.244 | | TODAY | 5% Critical Value | | -17.3 | -2.91 | 0.168 | 5.48 | 5.48 | -2.901 | | Table | B4 | France | Unit | Root | Tests | |-------|-----------|--------|------|------|-------| | | | | | | | | Table B4 France | k | alpha-hat | MZa | MZt | MSB | ERS Pt | M Pt | DF-GLS | |-----------------|------------------|-----------|---------|--------|-------|--------|--------|--------| | In(IB) | 7 | 0.993 | -0.912 | -0.464 | 0.509 | 18.863 | 16.343 | -0.618 | | In(YB) | 12 | 1.002 | 0.884 | 0.777 | 0.879 | 72.892 | 54.207 | 0.623 | | O | 11 | 1.008 | 1.132 | 0.701 | 0.619 | 35.481 | 31.705 | 0.483 | | User Cost | 0 | 0.945 | -5.003 | -1.575 | 0.315 | 5.861 | 4.915 | -1.639 | | Long Rate | 1 | 0.979 | -4.103 | -1.348 | 0.328 | 6.337 | 6.080 | -1.266 | | CV(DP) | 10 | 1.014 | 0.215 | 0.215 | 0.999 | 72.450 | 58.790 | 0.491 | | CV(DER) | 5 | 0.812 | -6.592 | -1.698 | 0.258 | 4.490 | 4.120 | -2.034 | | CV(DEQ) | 0 | 0.862 | -12.152 | -2.439 | 0.201 | 2.231 | 2.119 | -2.624 | | CV(DIP) | 3 | 0.983 | -1.477 | -0.756 | 0.512 | 14.331 | 14.395 | -0.834 | | CV(DLR) | 4 | 0.939 | -3.312 | -1.256 | 0.379 | 9.962 | 7.375 | -1.255 | | CV(RER) | 5 | 0.895 | -1.489 | -0.693 | 0.466 | 16.721 | 13.077 | -0.965 | | SD(DP) | 0 | 0.903 | -8.755 | -2.092 | 0.239 | 3.027 | 2,799 | -2.206 | | SD(DER) | 10 | 0.916 | -2.387 | -1.020 | 0.427 | 9.675 | 9.835 | -2.166 | | SD(DEQ) | 8 | 0.882 | -8.499 | -2.038 | 0.240 | 3.139 | 2.973 | -1.822 | | SD(DLR) | 1 | 0.941 | -12.951 | -2.539 | 0.196 | 2.351 | 1.914 | -2.542 | | V(DP) | 8 | 0.954 | -0.731 | -0.571 | 0.781 | 39.836 | 30.657 | -1.893 | | V(DER) | 8 | 0.953 | -2.241 | -1.015 | 0.453 | 10.456 | 10.607 | -1.415 | | and a second | 8 | 0.943 | -4.027 | -1.394 | 0.346 | 6.545 | 6.113 | -1.440 | | V(DEQ) | 8 | 0.957 | -5.328 | -1.632 | 0.306 | 5.701 | 4.600 | -1.478 | | V(DLR) | 5% Critical Valu | | -8.1 | -1.98 | 0.233 | 3.17 | 3.17 | -1.98 | Notes: K is the lag length determined by MAIC. Sample period 1973Q1 1996Q1. Alpha-hat is the estimated autoregressive coefficient. All variables have been detrended by GLS. Estimated statistics in bold indicate stationarity. | Table B5 German | y Unit Root Tests | I the best | MZa | MZt | MSB | ERS Pt | M Pt | DF-GLS | |-----------------|--------------------|------------|---------|--------|-------|--------|--------|---------| | | k | alpha-hat | | | 0.702 | 36.968 | 33.507 | 0.166 | | n(IB) | 1 | 1.002 | 0.357 | 0.250 | 0.834 | 67.288 | 53.910 | 0.940 | | n(YB) | 4 | 1.006 | 1.333 | 1.112 | | 17.760 | 14.904 | -0.727 | |) | 2 | 0.983 | -1.397 | -0.724 | 0.519 | 7.143 | 6.398 | -1.419 | | Jser Cost | 1 | 0.964 | -3.905 | -1.257 | 0.322 | | 3.091 | -2.083 | | ong Rate | 1 | 0.939 | -9.802 | -2.061 | 0.210 | 3.460 | 3.011 | -2.075 | | CV(DP) | 2 | 0.869 | -9.694 | -2.077 | 0.214 | 3.469 | 38.647 | -1.949 | | CV(DER) | 9 | 0.682 | -0.470 | -0.406 | 0.864 | 38.347 | | -2.414 | | CV(DEQ) | 0 | 0.884 | -10.345 | -2.270 | 0.219 | 2.492 | 2.384 | | | CV(DIP) | 11 | 0.498 | -0.580 | -0.513 | 0.885 | 39.150 | 38.992 | -1.721 | | | 3 | 0.841 | -9.457 | -2.171 | 0.230 | 2.838 | 2.604 | -2.226 | | CV(DLR) | 0 | 0.460 | -37.435 | -4.321 | 0.115 | 0.665 | 0.670 | -5.919 | | CV(RER) | 10 | 0.906 | -1.177 | -0.454 | 0.386 | 12.903 | 11.790 | -1.378 | | SD(DP) | | 0.932 | -2.852 | -1.193 | 0.418 | 9.413 | 8.587 | -1.864 | | SD(DER) | 9 | 0.900 | -4.144 | -1.362 | 0.329 | 6.161 | 6.018 | -1.399 | | SD(DEQ) | 8 | - | -1.865 | -0.938 | 0.503 | 15,989 | 12.790 | -1.225 | | SD(DLR) | 10 | 0.957 | | -0.544 | 0.396 | 13,699 | 11.639 | -1.223 | | V(DP) | 8 | 0.953 | -1.372 | -0.677 | 0.695 | 30.323 | 24.080 | -0.888 | | V(DER) | 8 | 0.983 | -0.974 | | 0.368 | 8.764 | 7.580 | -1.209 | | V(DEQ) | 8 | 0.950 | -3.189 | -1.173 | | 5.157 | 4,706 | -1.662 | | V(DLR) | 8 | 0.944 | -5.228 | -1.610 | 0.308 | | 3.17 | -1.98 | | | 5% Critical Values | | -8.1 | -1.98 | 0.233 | 3.17 | 3.17 | 1 -1.70 | | Table Bo Germai | K K | s Trend Included
alpha-hat | MZa | MZt | MSB | ERS Pt | M Pt | DF-GLS | |-----------------|-------------------|-------------------------------
--|--------|-------------------------|--------|--|--------| | | | 0.964 | -3.147 | -1.251 | 0.398 | 34.608 | 28.895 | -1.373 | | n(IB) | 0 | | -2.685 | -1.126 | 0.419 | 35.442 | 32.837 | -1.192 | | n(YB) | 0 | 0.970 | -0.898 | -0.332 | 0.370 | 40.762 | 35.741 | -0.350 | | | 2 | 0.988 | The second secon | -2.104 | 0.237 | 10.726 | 10.281 | -2.231 | | Iser Cost | 0 | 0.901 | -8.870 | | 0.173 | 5.505 | 5.603 | -2.940 | | ong Rate | 1 | 0.898 | -16.541 | -2.861 | 0.197 | 7.327 | 7,333 | -2.528 | | V(DP) | 2 | 0.830 | -12.628 | -2.492 | - CONTRACTOR CONTRACTOR | 67.341 | 67,784 | -2.653 | | V(DER) | 9 | 0.352 | -1.341 | -0.818 | 0.610 | | 7.807 | -2.589 | | CV(DEQ) | 0 | 0.864 | -12.038 | -2.410 | 0.200 | 7.722 | The second secon | -2.342 | | CV(DIP) | 11 | 0.045 | -1.317 | -0.763 | 0.580 | 62.448 | 62.883 | | | | 3 | 0.800 | -12.130 | -2.432 | 0.200 | 7.973 | 7.683 | -2.473 | | CV(DLR) | 0 | 0.416 | -39.241 | -4.427 | 0.113 | 2.400 | 2.337 | -6.263 | | CV(RER) | 0 | 0.818 | -15.679 | -2.756 | 0.176 | 6.000 | 6.076 | -3.034 | | SD(DP) | 9 | 0.873 | -6.048 | -1.635 | 0.270 | 14.694 | 14.984 | -2.326 | | D(DER) | | | -4.418 | -1.426 | 0.323 | 20.325 | 20.129 | -1.454 | | SD(DEQ) | 8 | 0.895 | | -1.289 | 0.384 | 31.016 | 27.063 | -1.605 | | D(DLR) | 10 | 0.928 | -3.354 | -2.216 | 0.221 | 9.015 | 9.202 | -2.347 | | V(DP) | 0 | 0.888 | -10.011 | -0.768 | 0.421 | 37.914 | 37.331 | -1.134 | | V(DER) | 8 | 0.963 | -1.826 | | 0.335 | 22.211 | 20.815 | -1.441 | | V(DEQ) | 8 | 0.937 | -4.341 | -1.454 | | 13.346 | 11.957 | -1.865 | | V(DLR) | 8 | 0.926 | -7.656 | -1.934 | 0.253 | | 5.48 | -2.901 | | | 5% Critical Value | by MAIC. Sample perio | -17.3 | -2.91 | 0.168 | 5.48 | | | Notes: K is the lag length determined by MAIC. Sample period 1973 statistics in bold indicate stationarity. | Table | B7 | Italy | Unit | Root | Tests | | |-------|-----------|-------|--------|------|-------|--| | | _ | | \neg | | 1. | | | Table B7 Italy Un | k Koot Tests | Alpha-hat | MZa | MZt | MSB | ERS Pt | M Pt | DF-GLS | |-------------------|-------------------|--|---------|--------|-------|--------|--------|--------| | (ID) | 2 | 0.994 | -1.000 | -0.416 | 0.415 | 15.734 | 12.993 | -0.378 | | n(IB) | 11 | 1,001 | 0.206 | 0.131 | 0.633 | 38.025 | 27.687 | 0.275 | | In(YB) | - 11 | 0.972 | -2.455 | -1.062 | 0.433 | 11.129 | 9.732 | -1.022 | | Q | 7 | 0.993 | -0.563 | -0.352 | 0.626 | 31.762 | 23.087 | -0.436 | | User Cost | 0 | 0.980 | -4.028 | -1.415 | 0.351 | 7.824 | 6.087 | -1.394 | | Long Rate | 1 | 0.984 | -1.745 | -0.778 | 0.446 | 13.169 | 11.857 | -0.814 | | CV(DP) | 1 | 0.904 | -0.771 | -0.492 | 0.637 | 26.616 | 22,497 | -0.919 | | CV(DER) | 9 | 0.540 | -23.676 | -3,434 | 0.145 | 1.112 | 1.056 | -4.225 | | CV(DEQ) | 2 | 1.000 | 0.175 | 0.136 | 0.774 | 57,018 | 37.769 | -0.016 | | CV(DIP) | 1 | The state of s | -2.984 | -1.162 | 0.389 | 9.830 | 8.088 | -1.263 | | CV(DLR) | 9 | 0.861 | -0.702 | -0.448 | 0.638 | 25.985 | 22.902 | -1.066 | | CV(RER) | 9 | 0.866 | -4.705 | -1.533 | 0.326 | 5.443 | 5.208 | -1.580 | | SD(DP) | 0 | 0.949 | -1.252 | -0.537 | 0.429 | 14.497 | 12.750 | -0.649 | | SD(DER) | 8 | 0.972 | -8.884 | -2.089 | 0.235 | 3.231 | 2.831 | -2.209 | | SD(DEQ) | 0 | | -8.420 | -1.990 | 0.236 | 4.105 | 3.148 | -1.880 | | SD(DLR) | 4 | 0.939 | -1.789 | -0.936 | 0.523 | 14.053 | 13.557 | -2.072 | | V(DP) | 8 | 0.962 | -2.238 | -0.893 | 0.399 | 10.915 | 9.790 | -0.962 | | V(DER) | 8 | | -3.316 | -1.259 | 0.380 | 8.586 | 7.368 | -1.556 | | V(DEQ) | 8 | 0.935 | -3.702 | -1.346 | 0.364 | 8.202 | 6.625 | -1.169 | | V(DLR) | 5% Critical Value | 0.950 | -8.1 | -1.98 | 0.233 | 3.17 | 3.17 | -1.98 | | Table B8 Italy Un | It Root Tests III | alpha-hat | MZa | MZt | MSB | ERS Pt | M Pt | DF-GLS | |-------------------|-------------------|------------------------------|---------|--------|-------|--------
--------------------------------|------------| | (TEX | 2 | 0.923 | -11.713 | -2.409 | 0.206 | 7.761 | 7.840 | -2.754 | | n(IB) | | | -10.410 | -2.165 | 0.208 | 11.009 | 9.310 | -2.067 | | n(YB) | | 0.946 | -10.735 | -2.290 | 0.213 | 8,448 | 8.623 | -2.318 | | 2 | | 0.917 | | -1.923 | 0.233 | 11.944 | 11.382 | -2.039 | | Jser Cost | 0 | 0.908 | -8.257 | | 0.252 | 15.765 | 13,606 | -1.531 | | ong Rate | 1 | 0.970 | -6.757 | -1.705 | 0.289 | 17.184 | 15.548 | -1.578 | | CV(DP) | 8 | 0.939 | -5.851 | -1.691 | | 45.854 | 45.127 | -1.188 | | CV(DER) | 9 | 0.820 | -2.019 | -1.004 | 0.498 | | 2.487 | -5.805 | | CV(DEQ) | 0 | 0.477 | -36.663 | -4.281 | 0.117 | 2.527 | 21.696 | -1.592 | | CV(DIP) | 1 | 0.951 | -4.129 | -1.401 | 0.339 | 28.954 | 100,000,000 | -5.599 | | CV(DLR) | 0 | 0.504 | -35.409 | -4.205 | 0.119 | 2.633 | 2.590 | | | CV(RER) | 9 | 0.816 | -1.593 | -0.882 | 0.554 | 56.610 | 56.204 | -1.119 | | SD(DP) | 0 | 0.922 | -6.812 | -1.842 | 0.270 | 16.704 | 13.381 | -2.000 | | SD(DER) | 8 | 0.949 | -2.578 | -1.043 | 0.404 | 32.531 | 32.057 | -1.213 | | | 0 | 0.866 | -11,699 | -2.345 | 0.200 | 9.171 | 8.181 | -2.553 | | SD(DEQ) | 4 | 0.886 | -18.016 | -3.001 | 0.167 | 5.534 | 5.058 | -2.741 | | SD(DLR) | | 0.949 | -2.839 | -1.191 | 0.420 | 39.258 | 32.097 | -2.162 | | V(DP) | 8 | | -12.570 | -2.478 | 0.197 | 7.568 | 7.415 | -2.007 | | V(DER) | 10 | 0.934 | | -2.049 | 0.224 | 11.835 | 10.323 | -2.212 | | V(DEQ) | 0 | 0.896 | -9.144 | -2.012 | 0.242 | 11.722 | 11.062 | -2.134 | | V(DLR) | 0 | 0.907 | -8.300 | | | | 5.48 | -2.901 | | | 5% Critical Value | S
AIC Sample period 1973C | -17.3 | -2.91 | 0.168 | 5.48 | J. 46
led by GLS. Estimated | statistics | Notes: K is the lag length determined by MAIC. Sample period 1973Q1 1996Q1. Alpha-hat is the estimated autoregressive coefficient. All variables have been determined to the control of th | 4 | | |---|---| | 4 | ø | | - | - | | | | | | k | alpha-hat | MZa | MZt | MSB | ERS Pt | M Pt | DF-GLS | |--|----------------------------|---|--|--|--|---|---|--| | In(IB) | 3 | 1.003 | 0.449 | 0.278 | 0.620 | 34.134 | 28.154 | 0.627 | | In(YB) | 4 | 1.001 | -0.028 | -0.015 | 0.537 | 27.053 | 20.927 | 0.305 | | 0 | 4 | 0.974 | -4.613 | -1.519 | 0.329 | 5.229 | 5.311 | -1.518 | | User Cost | 6 | 0.985 | -1.470 | -0.857 | 0.583 | 21.642 | 16.659 | -1.071 | | Long Rate | 0 | 0.982 | -1.720 | -0.600 | 0.349 | 10.150 | 9.994 | -0.610 | | CV(DP) | 1 | 0.984 | -1.745 | -0.778 | 0.446 | 13.169 | 11.857 | -0.814 | | CV(DER) | 9 | 0.904 | -0.771 | -0.492 | 0.637 | 26.616 | 22.497 | -0.919 | | CV(DEQ) | 2 | 0.540 | -23.676 | -3.434 | 0.145 | 1.112 | 1.056 | -4.225 | | CV(DIP) | 1 | 1.000 | 0.175 | 0.136 | 0.774 | 57.018 | 37.769 | -0.016 | | CV(DLR) | 9 | 0.861 | -2.984 | -1.162 | 0.389 | 9.830 | 8.088 | -1.263 | | CV(RER) | 9 | 0.866 | -0.702 | -0.448 | 0.638 | 25.985 | 22.902 | -1.066 | | SD(DP) | 12 | 0.874 | -1.364 | -0.725 | 0.531 | 15.294 | 15.426 | -2.725 | | SD(DER) | 0 | 0.906 | -8.447 | -1.792 | 0.212 | 4.335 | 3.865 | -1.895 | | SD(DEQ) | 8 | 0.943 | -3.786 | -1.358 | 0.359 | 6.353 | 6.483 | -1.309 | | SD(DLR) | 5 | 0.953 | -3.806 | -1.339 | 0.352 | 8.546 | 6.466 | -1.306 | | V(DP) | 8 | 0.957 | -1.328 | -0.646 | 0.486 | 15.270 | 14.163 | -1.458 | | V(DER) | 0 | 0.934 | -6.031 | -1.331 | 0.221 | 5.431 | 5.244 | -1.383 | | V(DEQ) | 8 | 0.954 | -3.424 | -1.308 | 0.382 | 7.008 | 7.155 | -1.282 | | V(DLR) | 8 | 0.982 | -1.365 | -0.799 | 0.585 | 22.783 | 17.223 | -0.701 | | | 5% Critical Value | | -8.1 | -1.98 | 0.233 | 3.17 | 3.17 | -1.98 | | Table BIU Japai | Unit Root Tests | alpha-hat | MZa | MZt | MSB | ERS Pt | M Pt | DF-GLS | | In(IB) | 2 | 0.961 | -10.768 | -2.319 | 0.215 | 9.390 | 8.472 | -2.464 | | In(YB) | 3 | 0.942 | -11.152 | -2.341 | 0.210 | 8.764 | 8.280 | -2.100 | | 0 | 4 | 0.970 | -5.664 | -1.671 | 0.295 | 16.945 | 16.063 | -1.572 | | User Cost | 6 | 0.979 | -2.150 | -0.923 | 0.429 | 44.393 | 36.588 | -1.053 | | Long Rate | 0 | 0.922 | -6.871 | -1.745 | 0.254 | 15.599 | 13.386 | -1.879 | | CV(DP) | 8 | 0.939 | -5.851 | -1.691 | 0.289 | 17.184 | 15.548 | -1.578 | | CV(DER) | 9 | 0.820 | -2.019 | -1.004 | 0.498 | 45.854 | 45.127 | -1.188 | | CV(DEQ) | 0 | 0.477 | -36.663 | -4.281 | 0.117 | 2.527 | 2.487 | -5.805 | | CV(DIP) | 1 | 0.951 | | | | | | | | CV(DIF) | | 0.951 | -4.129 | -1.401 | 0.339 | 28.954 | 21.696 | -1.592 | | | 0 | 0.504 | -4.129
-35.409 | -1.401
-4.205 | 0.339
0.119 | 28.954
2.633 | 21.696
2.590 | | | CV(DLR) | | | | | | | | -1.592 | | CV(DLR)
CV(RER) | 0 | 0.504 | -35.409 | -4.205 | 0.119 | 2.633 | 2.590 | -1.592
-5.599 | | CV(DLR)
CV(RER)
SD(DP) | 9 | 0.504
0.816 | -35.409
-1.593 | -4.205
-0.882
-2.565
-2.222 | 0.119
0.554
0.195
0.209 | 2.633
56.610
7.776
8.843 | 2.590
56.204
6.927
8.978 | -1.592
-5.599
-1.119
-2.809
-2.364 | | CV(DLR)
CV(RER)
SD(DP)
SD(DER) | 0
9
0 | 0.504
0.816
0.848 | -35.409
-1.593
-13.157 | -4.205
-0.882
-2.565 | 0.119
0.554
0.195 | 2.633
56.610
7.776 | 2.590
56.204
6.927 | -1.592
-5.599
-1.119
-2.809 | | CV(DLR) CV(RER) SD(DP) SD(DER) SD(DEQ) | 0
9
0 | 0.504
0.816
0.848
0.881 | -35.409
-1.593
-13.157
-10.650 | -4.205
-0.882
-2.565
-2.222 | 0.119
0.554
0.195
0.209 | 2.633
56.610
7.776
8.843 | 2.590
56.204
6.927
8.978 | -1.592
-5.599
-1.119
-2.809
-2.364 | | CV(DLR) CV(RER) SD(DP) SD(DER) SD(DEQ) SD(DLR) | 0
9
0
0
8 | 0.504
0.816
0.848
0.881
0.932 | -35.409
-1.593
-13.157
-10.650
-4.595 | -4.205
-0.882
-2.565
-2.222
-1.516 | 0.119
0.554
0.195
0.209
0.330 | 2.633
56.610
7.776
8.843
20.078 | 2.590
56.204
6.927
8.978
19.829 | -1.592
-5.599
-1.119
-2.809
-2.364
-1.445 | | CV(DLR) CV(RER) SD(DP) SD(DER) SD(DEQ) SD(DLR) V(DP) | 0
9
0
0
8
5 | 0.504
0.816
0.848
0.881
0.932
0.881 | -35.409
-1.593
-13.157
-10.650
-4.595
-10.705 | -4.205
-0.882
-2.565
-2.222
-1.516
-2.287
-2.222
-1.636 | 0.119
0.554
0.195
0.209
0.330
0.214 | 2.633
56.610
7.776
8.843
20.078
9.282 | 2.590
56.204
6.927
8.978
19.829
8.643 | -1.592
-5.599
-1.119
-2.809
-2.364
-1.445
-2.168 | | CV(DLR) CV(RER) SD(DP) SD(DER) SD(DEQ) SD(DLR) V(DP) V(DER) V(DEQ) | 0
9
0
0
8
5 | 0.504
0.816
0.848
0.881
0.932
0.881
0.889 | -35.409
-1.593
-13.157
-10.650
-4.595
-10.705
-9.878 | -4.205
-0.882
-2.565
-2.222
-1.516
-2.287
-2.222 | 0.119
0.554
0.195
0.209
0.330
0.214 | 2.633
56.610
7.776
8.843
20.078
9.282
9.553 | 2.590
56.204
6.927
8.978
19.829
8.643
9.226 | -1.592
-5.599
-1.119
-2.809
-2.364
-1.445
-2.168
-2.367 | V(DLR) 8 0.937 -4.004 -1.276 0.319 22.429 21.189 -1.279 5% Critical Values -17.3 -2.91 0.168 5.48 5.48 -2.901 Notes: K is the lag length determined by MAIC. Sample period 1973Q1 1996Q1. Alpha-hat is the estimated autoregressive coefficient. All variables have been detrended by GLS. Estimated statistics in bold indicate stationarity. | Table B11 UK Ur | k | alpha-hat | MZa | MZt | MSB | ERS Pt | M Pt | DF-GLS | |--------------------|---|-----------|---------|--------|-------|--------|--------|--------| | In(IB) | 4 | 1.001 | -0.469 | -0.210 | 0.448 | 18.005 | 15.457 | 0.041 | | In(YB) | 4 | 1.005 | 1.459 | 1.108 | 0.759 | 56.244 | 46.814 | 0.787 | | 0 | 2 | 0.983 | -1.562 | -0.708 | 0.453 | 12.373 | 12.544 | -0.706 | | User Cost | 0 | 0.955 | -4.076 | -0.450 | 0.110 | 7.062 | 6.836 | -0.472 | | Long Rate | 5 | 0.958 | -2.381 | -1.003 | 0.421 | 10.157 | 9.767 | -1.258 | | CV(DP) | 0 | 0.590 | -2.324 | -1.056 | 0.454 | 10.477 | 10.392 | -3.419 | | CV(DER) | 0 | 0.488 | -36.157 | -4.193 | 0.116 | 0.863 | 0.849 | -5.636 | | CV(DEQ) | 0 | 0.817 | -15.759 | -2.763 | 0.175 | 1.708 | 1.721 | -3.041 | | CV(DIP) | 3 | 0.420 | -12,175 | -2.460 | 0.202 | 2.002 | 2.043 | -3.281 | | | 2 | 0.983 | -1.593 | -0.804 | 0.505 | 14.718 | 13.788 | -0.825 | | CV(DLR)
CV(RER) | 0 | 0.379 | -40.653 | -4.440 | 0.109 | 0.827 | 0.792 | -6.443 | | SD(DP) | 0 | 0.913 | -7.929 | -1.954 | 0.246 | 3.236 | 3.233 | -2.045 | | SD(DP) | 0 | 0.913 | -3.264 | -1.263 | 0.387 | 8.122 | 7.493 | -1.330 | | CV(DP) | 9 | 0.590 | -2.324 | -1.056 | 0.454 | 10.477 | 10.392 | -3.419 | |---------|--------------------|-------------------|---------|--------|-------|--------|--------|--------| | CV(DER) | 0 | 0.488 | -36.157 | -4.193 | 0.116 | 0.863 | 0.849 | -5.636 | | CV(DEQ) | 0 | 0.817 | -15.759 | -2.763 | 0.175 | 1.708 | 1.721 | -3.041 | | CV(DIP) | 3 | 0.420 | -12.175 | -2.460 | 0.202 | 2.002 | 2.043 | -3.281 | | CV(DLR) | 0 | 0.983 | -1.593 | -0.804 | 0.505 | 14.718 | 13.788 | -0.825 | | CV(RER) | 0 | 0.379 | -40.653 | -4.440 | 0.109 | 0.827 | 0.792 | -6.443 | | SD(DP) | 0 | 0.913 | -7.929 | -1.954 | 0.246 | 3.236 | 3.233 | -2.045 | | SD(DER) | 8 | 0.927 | -3,264 | -1.263 | 0.387 | 8.122 | 7.493 | -1.330 | | SD(DEQ) | 8 | 0.911 | -6.157 | -1.691 | 0.275 | 4.214 | 4.190 | -1.588 | | SD(DEQ) | 0 | 0.895 | -2.903 | -1.137 | 0.392 | 8.441 | 8.274 | -2.498 | | V(DP) | 12 | 0.912 | -1.730 | -0.845 | 0.488 | 12.889 | 12.900 | -2.445 | | V(DF) | 9 | 0.967 | -1.653 | -0.909 | 0.550 | 18.325 | 14.821 | -1.050 | | V(DEQ) | 0 | 0.929 | -2.407 |
-0.974 | 0.405 | 9.693 | 9.490 | -2.529 | | | 8 | 0.946 | -3.189 | -1.206 | 0.378 | 8.049 | 7.615 | -1.415 | | V(DLR) | 5% Critical Values | The second second | -8.1 | -1.98 | 0.233 | 3.17 | 3.17 | -1.98 | | Table DIE ON C | nit Root Tests Tr | alpha-hat | MZa | MZt | MSB | ERS Pt | M Pt | DF-GLS | |--------------------|-------------------|-----------|---------|--------|-------|--------|--------|--------| | L-(ID) | 0 | 0.947 | -4.786 | -1.516 | 0.317 | 20.619 | 18.854 | -1.601 | | In(IB) | 3 | 0.963 | -7.096 | -1.810 | 0.255 | 15.751 | 12.957 | -1.624 | | ln(YB) | 3 | 0.955 | -4.162 | -1.393 | 0.335 | 27.892 | 21.385 | -1.385 | | Una Cast | 0 | 0.896 | -9.328 | -1.383 | 0.148 | 12.492 | 12.470 | -1.471 | | User Cost | 5 | 0.938 | -4.153 | -1.384 | 0.333 | 27.332 | 21.351 | -1.458 | | Long Rate | 9 | 0.496 | -3.604 | -1.330 | 0.369 | 26.534 | 25.077 | -3.492 | | CV(DP) | 0 | 0.502 | -35.522 | -4.179 | 0.118 | 2.719 | 2.763 | -5.565 | | CV(DER)
CV(DEQ) | 0 | 0.774 | -18.991 | -3.076 | 0.162 | 4.923 | 4.830 | -3.476 | | | 3 | 0.317 | -14.637 | -2.705 | 0.185 | 6.180 | 6.230 | -3.648 | | CV(DIP) | 0 | 0.967 | -2.670 | -1.080 | 0.405 | 41.678 | 31.636 | -1.264 | | CV(DLR) | 0 | 0.391 | -40.224 | -4,453 | 0.111 | 2.402 | 2.436 | -6.402 | | CV(RER) | 0 | 0.883 | -10.313 | -2.257 | 0.219 | 10.097 | 8.903 | -2.439 | | SD(DP) | 0 | 0.895 | -4.597 | -1,440 | 0.313 | 19.837 | 19.284 | -1.515 | | SD(DER) | 8 | 0.878 | -9.539 | -2.142 | 0.225 | 10.613 | 9.736 | -1.885 | | SD(DEQ) | 9 | 0.863 | -5.104 | -1.554 | 0.304 | 19.974 | 17.665 | -2.632 | | SD(DLR) | 0 | 0.928 | -6.407 | -1.765 | 0.275 | 15.902 | 14.225 | -1.877 | | V(DP) | 8 | 0.947 | -2.526 | -1.035 | 0.410 | 36.338 | 32.776 | -1.174 | | V(DER) | | 0.924 | -5.343 | -1.537 | 0.288 | 18.574 | 16.743 | -1.554 | | V(DEQ) | 8 | 0.924 | -5.161 | -1.552 | 0.301 | 20.676 | 17.437 | -1.626 | | V(DLR) | 5% Critical Value | | -17.3 | -2.91 | 0.168 | 5.48 | 5.48 | -2.901 | Notes: K is the lag length determined by MAIC. Sample period 1973Q1 1996Q1. Alpha-hat is the estimated autoregressive coefficient. All variables have been detrended by GLS. Estimated statistics in bold indicate stationarity. | Table | B13 | US | Unit | Root | Tests | |-------|-----|----|------|------|-------| | | | | | | | | Table B13 US Un | | alpha-hat | MZa | MZt | MSB | ERS Pt | M Pt | DF-GLS | |-----------------|-------------------|-------------------|---------|--------|-------|--|--------|--------| | | k 2 | | 1.489 | 1.014 | 0.681 | 50,527 | 39.217 | 1.067 | | In(IB) | L | 1.007 | | 0.377 | 0.609 | 36.351 | 28.302 | 0.579 | | In(YB) | 9 | 1.003 | 0.619 | | 0.625 | 25.957 | 22.201 | -0.489 | | Q | 0 | 0.992 | -0.719 | -0.450 | 0.455 | 11.341 | 11.520 | -0.859 | | User Cost | 2 | 0.984 | -1.935 | -0.881 | | 6.083 | 5,474 | -1.479 | | Long Rate | 1 | 0.965 | -4.494 | -1.488 | 0.331 | 4,496 | 4.444 | -2.880 | | CV(DP) | 6 | 0.741 | -5.894 | -1.625 | 0.276 | | 3.810 | -1.901 | | CV(DER) | 5 | 0.862 | -7.410 | -1.786 | 0.241 | 3.813 | | -3.690 | | CV(DEQ) | 1 | 0.679 | -22.588 | -3.361 | 0.149 | 1,133 | 1.085 | | | CV(DIP) | 7 | 0.609 | -3.138 | -1.239 | 0.395 | 7.647 | 7.788 | -2.260 | | | 8 | 0.939 | -9.640 | -2.195 | 0.228 | 2.807 | 2.545 | -1.744 | | CV(DLR) | 2 | 0.852 | -9.698 | -2.037 | 0.210 | 3.392 | 3.162 | -2.100 | | CV(RER) | 0 | 0.952 | -4.378 | -1.460 | 0.334 | 6.309 | 5.632 | -1.509 | | SD(DP) | 8 | 0.962 | -1.733 | -0.884 | 0.510 | 17.564 | 13.427 | -0.974 | | SD(DER) | | 0.902 | -4.962 | -1.566 | 0.316 | 5.617 | 4.961 | -1.588 | | SD(DEQ) | 8 | - Annahit Annah - | -5.647 | -1.672 | 0.296 | 5.204 | 4.363 | -1.647 | | SD(DLR) | 2 | 0.952 | | -1.354 | 0.333 | 6.050 | 6.119 | -1.295 | | V(DP) | 8 | 0.956 | -4.062 | | 0.792 | 49.265 | 34.523 | -0.411 | | V(DER) | 8 | 0.991 | -0.363 | -0.288 | | 10.703 | 9.312 | -1,436 | | V(DEQ) | 8 | 0.960 | -2.620 | -1.135 | 0.433 | 2.880 | 2.689 | -1.704 | | V(DLR) | 9 | 0.959 | -9.113 | -2.134 | 0.234 | - Committee of the Comm | | -1.98 | | 1 (22.2) | 5% Critical Value | 3 | -8.1 | -1.98 | 0.233 | 3.17 | 3.17 | -1.90 | |
 |
Taste Trees | d Included | | |------|-----------------|------------|--| | Table bi4 US UII | L Kubi Itaia II. | alpha-hat | MZa | MZt | MSB | ERS Pt | M Pt | DF-GLS | |------------------|-------------------|--|---------|--------
--|--------|--|---------------| | | | 0.925 | -14.966 | -2.651 | 0.177 | 6.534 | 6.592 | -2.647 | | n(IB) | - 1 | and the second s | -11.717 | -2.411 | 0.206 | 8.528 | 7.830 | -2.465 | | n(YB) | 1 | 0.919 | | -0.237 | 0.468 | 65.784 | 51.038 | -0.451 | | 2 | 0 | 0.990 | -0.507 | -1.089 | 0.447 | 45.496 | 36.837 | -1.187 | | Jser Cost | 1 | 0.971 | -2.435 | | 0.293 | 18.079 | 16.517 | -1.604 | | ong Rate | 1 | 0.958 | -5.471 | -1.603 | The state of s | 2.781 | 2.725 | -5.338 | | CV(DP) | 0 | 0.538 | -33.683 | -4.100 | 0.122 | | The state of s | -1.890 | | CV(DER) | 5 | 0.868 | -7.229 | -1.799 | 0.249 | 12.547 | 12.788 | - Contraction | | CV(DEQ) | 1 | 0.646 | -24.797 | -3.519 | 0.142 | 3.753 | 3.687 | -3.900 | | | 7 | 0.467 | -4.660 | -1.526 | 0.328 | 19.431 | 19.553 | -2.598 | | CV(DIP) | , | 0.933 | -6.784 | -1.831 | 0.270 | 13.961 | 13.443 | -1.832 | | CV(DLR) | 2 | 0.838 | -10,801 | -2.266 | 0.210 | 8.575 | 8.726 | -2.328 | | CV(RER) | 2 | | -5.975 | -1.689 | 0.283 | 18.628 | 15.212 | -1.833 | | SD(DP) | 0 | 0.932 | -14.207 | -2.613 | 0.184 | 6,985 | 6.720 | -2.861 | | SD(DER) | 0 | 0.836 | | -1.980 | 0.243 | 12.807 | 11.303 | -1.797 | | SD(DEQ) | - 8 | 0.899 | -8.147 | | 0.244 | 11.647 | 11.225 | -1.953 | | SD(DLR) | 2 | 0.931 | -8.173 | -1.997 | | 18.230 | 17.391 | -1.477 | | V(DP) | 8 | 0.946 | -5.194 | -1.572 | 0.303 | | The state of s | -1.988 | | V(DER) | 8 | 0.884 | -5.331 | -1.547 | 0.290 | 19.084 | 16.814 | | | V(DEQ) | 8 | 0.948 | -3.723 | -1.305 | 0.350 | 26.764 | 23.610 | -1.481 | | V(DLR) | 0 | 0.951 | -12.446 | -2.481 | 0.199 | 7.430 | 7.398 | -1.847 | | V(DLR) | 5% Critical Value | | -173 | -2.91 | 0.168 | 5.48 | 5.48 | -2.901 | Notes: K is the lag length determined by MAIC. Sample period 1973Q1 1996Q1. Alpha-hat is the estimated autoregressive coefficient. All variables have been detrended by GLS. Estimated statistics in bold indicate stationarity. ## Appendix C: Tests using other Measures of Uncertainty As mentioned in the text, our focus on GARCH measures of uncertainty is justified by the fact that heightened average volatility alone may merely reflect a greater incidence of random and independent shocks, i.e. greater risk, without a change in underlying perceptions as to the situation on the part of firms considering investment. On the other hand, heightened conditional volatility may indicate greater uncertainty on the part of the market regarding the direction of the variable and the intentions of the authorities, which may be more likely to affect investment. Nevertheless, for completeness, in this appendix we assess the Kenen and Rodrick and rolling standard deviation measures for selected indicators of uncertainty and their impact on investment using the panel estimation framework. The results are presented in Table C1. Whereas the GARCH approach estimates the autocorrelated volatility of our time series and provides negative effects from uncertainty, the volatility of the raw exchange rate, or total volatility, series does not provide substantial results in favour of a negative effect from moving-average measures of exchange rate volatility on investment. None of the PMG coefficients in Table C1 suggest a significant negative effect (only the mean group estimator – which may be susceptible to country outliers – gives an indication of negative effect from volatility). Indeed the first difference of Kenen's measure of volatility suggests that there is a positive effect (although in this case the LR statistics for pooling fails). As argued there are economic reasons for preferring the GARCH, as it highlights periods of concentrated volatility which might be expected to maximise uncertainty and the option value of waiting to undertake investment, while the rolling measures could just be capturing background volatility with occasional outliers that firms learn to live with. From the other variables considered, there is some indication of a negative effect from inflation in Table C2 and this is irrespective of whether we use Kenen and Rodrick's measure of volatility or the standard deviation. The implications for monetary policy reactions may be a reason why it is moving average and not GARCH measures of inflation volatility that come to the fore. Short, and long interest rates and the equity price series provide scant evidence of any effect in Table C3. We find that the standard deviation of the equity series has a positive effect although there is no evidence of poolability using the LR statistic (Table C4). Table C1 Panel Estimation of investment: Whole Sample | Period G7 | | | | | | | | | | | | | 21125 | | D) (OF | 1400 | |---------------------------------------|--------------------|---|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------------------|--------------------|----------------------|--------------------|--------------------|--------------------| | | PMGE | MGE | LYB | 1.408
(24.204) | 1.441
(18.147) | 1.425
(23.237) | 1.421
(18.928) | 1.285
(22.750) | 1.356
(20.518) | 1.272
(23.434) | 1.288
(17.926) | 1.379
(26.702) | 1.372
(14.886) | 1.382
(27.001) | 1.378
(17.926) | 1.324
(31.984) | 1.343
(16.351) | 1.339
(30.682) | 1.350
(18.163 | | SD(DER) | 1.266 (1.288) | -1.487
(-0.639) | | | | | | | | | | | | | | | | KR(DER) | | | 1.651
(2.112) | -0.191
(-0.139) | | | | | | | | | | | | | | SD(DP) | | | | | -8.865
(-2.002) | -7.196
(-1.055) | | | | | | | | | | | | KR(DP) | | | | | | | -8.331
(-2.406) | -9.150
(-1.927) | | | | | | | | | | SD(LR) | | | | | | | | | 0.025
(1.013) | 0.025
(0.901) | | | | | | | | KR(LR) | | | | | | | | | | | 0.056
(1.692) | 0.042
(1.393) | | | | | | SD(DEQ) | | | | | | | | | | | | |
0.283 (1.399) | 0.027
(0.109) | | | | KR(DEQ) | | | | | | | | | | | | | | | 0.126
(0.816) | -0.087
(-0.488) | | Error
Correction | -0.077
(-6.204) | -0.090
(-5.704) | -0.075
(-6.152) | -0.094
(-6.021) | -0.082
(-4.912) | -0.099
(-6.308) | -0.084
(-4.904) | -0.101
(-5.586) | -0.081
(-7.068) | -0.102
(-5.219) | -0.085
(-6.932) | -0.109
(-4.871) | -0.091
(-5.597) | -0.107
(-6.904) | -0.090
(-6.215) | -0.106
(-6.902) | | LR Statistic x ² [p-value] | 32.4 | 32.41 (12) 26.86 (12) 26.52 (12) [0.00] [0.01] [0.01] | | | | 7 (12)
03 j | [0. | l (12)
.16] | | 7 (12)
.15] | 13.86 (12)
[0.31] | | 14.32 (12)
(0.28] | | | | | Hausman x² | 1. | .76
421 | 3. | 25
201 | | .14
081 | | 12
941 | | .92
.971 | n | .8. | | .91
.09] | | .86
.05] | Notes: SD(.) is the standard deviation. KR(.) is the Kenen Rodrick measure of volatility. See Table 8. 47 APPENDIX D: Chart D1: Nominal Exchange Rate Volatility measured by GARCH 49 Appendix E | [p-value] | Q Q Q DER Joint 0.20{18} [0.90] Joint 11.15{18} [0 | | 5{18} [0.01] | Q
DER
Joint 5.81{18} [0.12] | | Q
DER
Joint 0.16{18} [0.98] | | Q
DER
Joint 1.01 {18} [0.80] | | Q
DER
Joint 2.51 [18] [0.47] | | Q
DER
Joint 2.24 {18} [0.52] | | | |-------------------------------------|--|--------------------|----------------------|-----------------------------------|--------------------|-----------------------------------|--------------------|------------------------------------|--------------------|------------------------------------|----------------------------|------------------------------------|----------------------------|----------------------------| | [p-value]
Hausman χ ² | | | Y | .00] | Υ [0.04] | | Y | | Y | | Y | | Y | | | LR Statistic x2 | | | 47.76 {18}
[0.00] | | | l {18}
041 | | 0 {18}
.001 | | 9 (18)
.09) | | 6 {18}
.00] | 33.62 {18}
[0.01] | | | Likelihood
(Unrestricted) | | 53.32
66.09) | | 3.2597
3.1378) | (1668 | .5399
.2952) | (167 | 0.51
(5.51) | (166 | (7.37) | (167 | 3.95) | (167 | 7.56) | | Error
Correction | -0.091
(-6.908) | -0.103
(-6.043) | -0.079
(-5.542) | -0.030
(-2.153) | -0.089
(-7.036) | -0.100
(-5.822) | -0.085
(-7.007) | -0.112
(-4.870) | -0.091
(-6.953) | -0.103
(-5.991) | -0.090
(-6.630) | -0.117
(-6.097) | -0.089
(-6.252) | -0.093
(-4.809) | | | | | 100 | | | | | | | | | | | | | CV(DRER) | | | | | | | | | | | | | -0.076
(-3.096) | -0.252
(-1.672) | | CV(DLR) | | | | | | | | | | | -0.049
(-1.092) | 0.134
(1.045) | | | | CV(DIP) | | | | | | | | | -0.047
(-1.203) | 13.584
(0.838) | | | | | | CV(DEQ) | | | | | | | -0.679
(-1.099) | 0.238
(0.086) | | | | | | | | CV(DP) | | | | | -4.143
(-0.643) | -40.500
(-1.360) | | | | | | | | | | CV(DER) | | | -7.135
(-2.717) | -23.609
(-2.154) | | | | | | | | | | | | Q | 0.166 (3.233) | 0.388
(0.743) | 0.210
(2.218) | 0.487
(1.059) | 0.166
(3.031) | 0.360
(0.662) | 0.227
(4.325) | 0.338
(0.842) | 0.164
(3.155) | 0.375
(0.720) | (3.665) | (0.871) | (2.992) | (1.024) | | ln(YB) | 1.247
(29.271) | 1.250
(10.998) | 1.282
(22.641) | 1.245
(10.272) | 1.236
(25.336) | 1.198
(12.887) | 1.255
(27.397) | 1.284
(12.029) | 1.243
(28.968) | 1.248
(12.774) | 1.236
(30.469)
0.173 | 1.261
(12.909)
0.335 | 1.259
(28.733)
0.165 | 1.240
(12.577)
0.506 | | | PMGE | MGE Joint U.2U[18] [0.9U] Joint 11.15[18] [0.01] Joint 5.81[18] [0.12] Joint 0.16[18] [0.9B] Joint 1.01[18] [0.80] Joint 2.51[18] [0.47] Joint 2.24 [18] [0.52] Notes: Dependent variable Business Investment. PMGE is Pooled Mean Group Estimation. MGE is Mean Group Estimation. Sample period 1973Q1 to 1996Q4. T statistics are in parentheses. Lag structure determined by Schwarz Bayesian Criteria. LR Statistic is a likelihood ratio test for the null hypothesis of poolability. Hausman test for poolability is a test for the equivalence of PMGE and MGE. If the null hypothesis is accepted (i.e. p value greater than 0.05) we can accept homogeneity of cross sectional long run coefficients. Table E2 Panel Estimation of Investment and Uncertainty Time means removed 197 | LR Statistic χ ² [p-value] | tricted) (1674.4052)
atistic x ² 1.90 {6} | | .74.4052) (1677.4316)
.90 {6} 3.645 {12} | | | 5 {12}
.85] | | . (12)
.51] | | {12}
.981 | | (12)
98] | | {12}
.97] | |---------------------------------------|---|------------------|---|--------------------|------------------|-------------------|------------------|-------------------|--------------------|--------------------|--------------------|--------------------|------------------|--------------------------| | Likelihood
(Unrestricted) | | | | | (1676 | .9917) | (1679 | .4363) | (1676 | .4638) | (1679 | .0231) | (1678 | 1676.5130
(1678.7986) | | Correction | (-4.985) | (-4.787) | (-5.079) | (-5.060) | (-5.009) | (-5.001)
.4684 | (-4.988)
1673 | (-5.010)
.8259 | (-5.038)
1674 | (-4.974) | (-5.137)
1676 | (-5.299)
.8560 | (-4.854)
1676 | (-4.926) | | Error | -0.097 | -0.096 | -0.097 | -0.094 | -0.098 | -0.102 | -0.098 | -0.099 | -0.097 | -0.094 | -0.095 | -0.095 | -0.097 | -0.095 | | CV(DRER) | | | | | | | | | | | | | (-2.421) | -0.061
(-3.543) | | CV(DLR) | | | | | | | | | | | -0.108
(-1.527) | -0.045
(-0.692) | -0.064 | 0.001 | | CV(DIP) | | | | | | | | | -0.066
(-1.343) | -0.095
(-1.114) | 0.100 | 0.046 | | | | CV(DEQ) | | | | | | | 0.636
(0.961) | 0.798
(0.418) | 2.000 | 0.005 | | | | | | CV(DP) | | | | | 0.953
(0.166) | 1.007
(0.097) | | | | | | | | | | CV(DER) | | | -4.130
(-2.029) | -4.161
(-3.368) | | | | | | | | | | | | In(YB) | 1.371
(8.521) | 1.037
(3.437) | 1.439
(9.423) | 0.988
(2.496) | 1.379
(8.438) | 1.166
(3.310) | 1.314
(7.454) | 0.996
(4.267) | 1.461
(8.374) | 1.006
(2.772) | 1.421
(9.153) | 1.104
(3.872) | 1.431
(9.610) | 1.046
(3.329) | | | PMGE | MGE Notes: Dependent variable Business Investment. PMGE is Pooled Mean Group Estimation. MGE is Mean Group Estimation. Sample period 1973Q1 to 1996Q4. T statistics are in parentheses. Lag structure determined by Schwarz Bayesian Criteria. LR Statistic is a likelihood ratio test for the null hypothesis of poolability. Hausman test for poolability is a test for the equivalence of PMGE and MGE. If the null hypothesis is accepted (i.e. p value greater than 0.05) we can accept homogeneity of cross sectional long run coefficients. 187 182 180 179 178 177 176 175 173 186 185 184 183 181 189 188 191 190 195 194 193 192 196 in transition Ray Barrell, Dawn Holland and Nigel Pain empirical relationships for the G7 Joseph Byrne and E. Philip Davis Disaggregate wealth and aggregate consumption: an investigation of Balance of payments prospects in EMU Dirk te Velde and Christopher Openness, integration and transition: prospects and policies for economies Evaluating macroeconomic models of the business cycle Andrew P. Blake manufacturing sector Florence Hubert and Nigel Pain Inward investment and technical progress in the United Kingdom developing economies Nigel Pain Openness, growth and development: trade and investment issues for expectations models Andrew P. Blake A 'timeless perspective' on optimality in forward-looking rational business investment for the G7 countries Paul Ashworth and E. Philip Davis Some evidence on financial factors in the determination of aggregate New Deal for Young People Rebecca Riley and Garry Young Mixed fortunes: graduate utilisation in service industries Geoff Mason Quantification of qualitative firm-level survey data James Mitchell, Richard WERS98 John Forth and Neil Millward The low-paid worker and the low-paying employer: characterisations using and Garry Young Pay settlements in Britain John Forth and Neil Millward A comparison of personal sector saving rates in the UK, US and Italy Tatiana performance: electronics in Britain and France Geoff Mason, Jean-Paul Knowledge infrastructure, technical problem-solving and industrial Increasing inequality in Higher Education: the role of term-time working The determinants of economic efficiency in English and Welsh universities Riley and Garry Young The macroeconomic impact of the New Deal for Young People Rebecca Does welfare-to-work policy increase employment? Evidence from the UK Credibility of the Russian stabilisation programme in 1995-98 Tatiana Kirsanova and James Sefton funding on old and new universities Heather Rolfe University strategy in an age of uncertainty: the effect of higher education from case studies of four universities Heather Rolfe The effect of tuition fees on students' demands and expectations: evidence Beltramo and Jean-Jacques Paul Philip Andrew Stevens Aggregate versus Disaggregate Survey-Based Indicators of Economic Activity . Smith and Martin R. Weale Sterling Volatility and European Monetary Union Christopher Taylor assessment Ray Barrell and Alvaro M. Pina How important are automatic stabilisers in Europe? A stochastic simulation Investment Florence Hubert and Nigel Pain Fiscal Incentives, European Integration and the Location of Foreign Direct lames Mitchell, Richard J. Smith and Martin R. Weale