National
Institute of

l I | l I I Economic and
l|ll l l l l I .Social Research

TIME SERIES MODELS FOR
EPIDEMICS: LEADING

INDICATORS, CONTROL GROUPS
AND POLICY ASSESSMENT

Andrew Harvey
Faculty of Economics, Cambridge University and NIESR

NIESR Discussion Paper No. 517
19 October 2020



About the National Institute of Economic and Social Research

The National Institute of Economic and Social Research is Britain's longest established
independent research institute, founded in 1938. The vision of our founders was to carry out
research to improve understanding of the economic and social forces that affect people’s lives,
and the ways in which policy can bring about change. Over eighty years later, this remains
central to NIESR's ethos. We continue to apply our expertise in both quantitative and
qualitative methods and our understanding of economic and social issues to current debates
and to influence policy. The Institute is independent of all party political interests.

National Institute of Economic and Social Research
2 Dean Trench St

London SW1P 3HE

T: +44 (0)20 7222 7665

E: enquiries@niesr.ac.uk

www.niesr.ac.uk
Registered charity no. 306083

This paper was first published in October 2020
© National Institute of Economic and Social Research 2020


mailto:enquiries@niesr.ac.uk

TIME SERIES MODELS FOR EPIDEMICS: LEADING
INDICATORS, CONTROL GROUPS AND POLICY ASSESSMENT

This article shows how new time series models can used to track the progress of an epidemic,
forecast key variables and evaluate the effects of policies. A class of univariate time
series models was developed by Harvey and Kattuman (2020). Here the framework is extended
to modelling the relationship between two or more series. The role of
common trends is discussed, and it is shown that when there is balanced growth
in the logarithms of the growth rates of the cumulated series, simple regression models
can be used to forecast using leading indicators. Data on daily deaths from Covid-19
in Italy and the UK provides an example. When growth is not balanced, the model can be
extended by including a stochastic trend: the viability of this model is investigated by
examining the relationship between new cases and deaths in the Florida second wave of
summer 2020. The balanced growth framework is then used as the basis for policy evaluation
by showing how some variables can serve as control groups for a target variable. This approach
is used to investigate the consequences of Sweden's soft lockdown coronavirus policy.

Keywords: Balanced growth; Co-integration; Covid-19; Gompertz curve; Kalman filter;
Stochastic trend.

JEL Classifications: C22, C32
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1 Introduction

The aim of this article is to show how time series models can be used to track
the progress of an epidemic, forecast key variables and evaluate the effects of
policies. The new methods draw much of their inspiration from techniques
in econometrics. However, the characteristics of time series for epidemics are
different from those of most time series in economics and these differences
need to be taken into account.

Harvey and Kattuman (2020a) - hereafter HK - developed a class of uni-
variate time series models for predicting future values of a variable which
when cumulated is subject to an unknown saturation level. In these models,
the logarithm of the growth rate of the cumulated series depends on a time
trend. Allowing this trend to be time-varying introduces flexibility which,
in the context of an epidemic, enables the effects of changes in policy and
population behaviour to be tracked. Nowcasts and forecasts of the variables
of interest, such as the daily number of cases, its growth rate and the instan-
taneous reproduction number, R;, can be made. Estimation of the models
is by maximum likelihood and goodness of fit can be assessed by standard
statistical test procedures.

Time series models can also be used to address other questions by ex-
ploring relationships between different series. One application concerns how
the time path of an epidemic in a country which suffers an outbreak be-
fore another can be used as a leading indicator. The rationale for modelling
the logarithm of the growth rate (of the cumulated series) comes from the
properties of a Gompertz growth curve and when two such curves follow the
same time path, but one lags the other, the trends in the series on the log-
arithms of the growth rate will be a constant distance apart. This suggests
that when the trends are stochastic, the same will be true. This situation,
known as balanced growth, arises in macroeconomics and is a special case of
what econometricians call co-integration'; see, for example, Stock and Wat-
son (1988). Balanced growth leads to a leading indicator regression model
in which the logarithm of the growth rate in one series depends on lags in
the logarithm of the growth rate of another series. The model is illustrated
by showing how deaths in the UK in the first few months of the coronavirus
epidemic can be predicted by deaths in Italy two weeks earlier.

'Maddala and Kim (1998) give a review of co-integration.



The requirement that two series exhibit balanced growth, while highly
desirable, is not necessary for one to be a good leading indicator of the other.
One way of dealing with this more general situation is by adding a stochastic
trend to the regression model. The need for the additional flexibility is
explored with data from the ‘second wave’ in Florida where it is shown how
daily new cases of coronavirus can be used to predict deaths. The modelling
framework is then extended to show how the data on new cases can be
combined with daily deaths to better estimate the path of an epidemic and
the associated values of R;.

Time series modelling of an intervention can be used to assess the impact
of a policy. This was done in HK in connection with the UK lockdown
of March 2020. Here an attempt is made to answer the question ‘What if
lockdown had been imposed a week earlier?” The impact of lockdown is then
explored further by developing the ideas on the logarithms of growth rates
following a common trend to try to estimate the number of coronavirus deaths
in Sweden had a more stringent lockdown been imposed. The methodology
draws on the study of control groups in time series by Harvey and Thiele
(2020). It is argued that the fact that death rates in Sweden were roughly
ten times those in neighbouring countries could be misleading; the growth
paths of the UK and Italy provide more relevant information.

2 Growth curves and time series models

This section sets out the basic model in which the logarithm of the growth
rate of the cumulated series consists of a stochastic trend plus an irregular
term. It is then shown how the framework may be extended to model the
relationship between two series.

2.1 Dynamic trend models

The observational model uses data on the time series of the cumulated total
of confirmed cases or deaths, Y;, and the daily change, y; = AY; =Y, — Y, ;.
HK show how the theory of generalized logistic growth curves suggests models
for Iny; and In g;, where g; = y;/Y;_1 or AlnY;. For the special case of the
Gompertz growth curve, the models simplify to

Iny, =Y, 14+ —7t+e, v>0, t=2,..T, (1)



and
Ingg=6—~vyt+e, t=2,..,T, (2)

where ¢; is a random disturbance term.
A stochastic, or time-varying, trend may be introduced into (2), to give
the dynamic trend model

Ing; =6; +¢, &~ NID(0,0?), t=2,..,T, (3)
where

0p = 01— Vi1 + 1 ntNNID(O7U727)7 (4)

Yo = Y1 TG CtNNfD(Oyaf),

and the normally distributed irregular, level and slope disturbances, &, 7,
and (,, respectively, are mutually independent. When O'g is positive, but
o2 = 0 the trend is an integrated random walk (IRW). HK found TRW trend
to be particularly useful for tracking an epidemic and it will be adopted in
the applications here. The speed with which a trend adapts to a change
depends on the signal-noise ratio, which for the IRW is ¢; = 07 /0?Z; the trend
is deterministic when ¢ = 0.

Allowing =, to change over time means that the progress of the epidemic
is no longer tied to the proportion of the population infected as it would
be if Y; followed a deterministic growth curve. Instead the model adapts to
movements brought about by changes in behaviour and policies. If ~, falls
to zero, the growth in Y; becomes exponential while a positive -, means that
the growth rate is increasing.

Additional components, such as day of the week effects, can be added
to (3). These may be deterministic or stochastic. Explanatory variables,
including interventions, can also be included. Such models can be estimated
using techniques based on state space models and the Kalman filter; see
Durbin and Koopman (2012) or Harvey (1989). Here the STAMP package
of Koopman et al. (2020) is used.

Remark 1 When the observations are small, a negative binomial distribu-
tion for y; may be appropriate. HK show how the model may be modified to
deal with this possibility for a univariate time series. However, the numbers
in the applications here are big enough to allow vy, to be treated as lognor-
mal and hence for the distribution of In gy, conditional on d;, to be considered
normal.



2.2 Forecasts

Recursions for making forecasts of future observations in the dynamic Gom-
pertz model are

/g\T-i-é\T = €xXp 6T+£|Ta t= ]-a 27 . (5)
Hrigr = Hrier(1+ grier) (6)

so that Yryoqr = grigqriirie—yr and Yrygr = Lpyqr; the initial value is
firr = Yr. The prediction o7 is simply d77 — v7f. Combining (5) and
(6) gives

/-1

Yror = Yr expdpior H(l +exp rqyr), £ =2,.. (7)
j=1

and Yri1r = Yrexp dpiqr.

The basic forecasts are made with the estimates of J; and v, at the end of
the sample. However, alternative scenarios in which +, is assumed to evolve
in a certain way, perhaps to reflect changing policies, such as the easing
of lockdown restrictions, may also be envisaged. Adapting the forecasts to
account, for such movements is straightforward.

2.3 Comparing different growth curves

The Gompertz growth curve lies behind the notion of setting up time series
models in which the logarithm of the growth rate of the cumulative total of
a variable follows a trend. It is therefore able to provide insight on how to
formulate and interpret models linking several series.

The Gompertz growth curve is

p(t) =mexp(—ae™),  a,y>0, —oo<t<oo, (8)

where 7 is a growth rate parameter, 1z is the upper bound or saturation level
and « reflects initial conditions. The associated incidence curve is

dp(t)/dt = p'(t) = you(t) exp(—1),

with a peak at t = v~ !In . Figure 1 shows an incidence curve with a peak
at t = 19.97, together with the same curve shifted to the right so the peak
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Figure 1: Gompertz incidence curves with v = 0.15, oy = 20 for the left
hand curve and a5 = 100 for the right hand curves.

is at 30.71. A curve above the right hand curve is also shown; this is higher
because the value of 7z is 1400 rather than 1000 as it is for the other two
curves. In all cases v = 0.15, but for the left hand curve « is 20 whereas for
the right hand curves it is 100.

Although the right hand curves in Figure 1 clearly lag the left hand one,
it is not immediately evident how to model the relationship. However, the
logarithms of the growth rates of p(t) are

Ing(t)=96—~t, t>0, 9)

where ¢ = In ay; compare (2). Figure 2 shows the two lines for In g(¢) running
in parallel. The distance between them depends on the intercepts, o, which
in turn depend on the initialization parameter, a.. The height of the incidence
curve, which depends on the saturation level, 1, is irrelevant; as a result the
lines corresponding to the two right hand incidence curves in Figure 1 are
identical. This is important because it means that small populations can be
compared with big ones: size does not matter.
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Figure 2: Logarithms of the growth rates for incidence curves in Figure 1;
v = 0.15, a; = 20 and a3 = 100 (upper line).
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Figure 3: Gompertz incidence curves with ay = 20 and y; = 0.15 for the left
hand curve and as = 100 and v, = 0.1 for the right hand curve.

When two lines are parallel, the upper line lags the lower one by

16252—51:lmoz2—lnoz17 (10)
v v

where §; and J5 are the intercepts of the lower and upper lines respectively
and a7 and «s are the corresponding initial conditions. In Figure 2 the lag
is k = 10.73.

When the «'s are different, the epidemic progresses at different speeds,
as can be seen in Figure 3. The lines for Ing(t) are no longer parallel
and subtracting the lower one (for variable 1) from the upper one gives
In(aays/a1v,) — (79 — 74)t. First multiplying the lower line by 8 = ~v,/v,
removes the time trend. However, when [ # 1, the time lag is no longer
constant.



3 A model for leading indicators

Now consider observational models of the form (2) for two time series which
are on the same growth path because v; = 7, but the first series leads the
second by k time periods. The observations run from ¢t = 1 to 7" but when
the first series is lagged by k time periods, In g; ;—; runs from ¢t = k£ + 1 to
T + k. Subtracting the first series from the second gives

Ingy=0+ngir+e, t=k+1,...T+Ek (11)

where § = In(as/ay) and the disturbance term is e, = €9 — €14-,. The
model takes the same form when the trends are stochastic, so long as there
is balanced growth.

Allowing for a lag structure in the leading series gives

k
Ingy =0+ B;lngij+e, e ~NID0,02), t=k+1,.T+h, (12)
j=h

where h < k and ) 3; = 1. Daily effects are a complicating factor, but can
be introduced into the model as additional terms on the right hand side. The
summation restriction is imposed by restricted least squares (RLS) which can
be performed very easily by reformulating (12) as

k—1
Ingo—Ingiei =6+Y Bi(ngij—Ingip)+e, t=k+1,.,T+h (13)
j=h

All that is required is an OLS regression of Ingy; —Ingy;— on Ingy,—; —
Ingii—x ,j=nh,..,k—1. The coefficient of In g; ;_j is equal to 1 — Zf;}ll B;
and the lag structure should be such that ¢ is close to zero. Balanced growth
continues to hold when ¢; is replaced by any stationary process.

When the two series are not on the same growth path, the model can be
extended by replacing the constant term by a stochastic trend. Thus

k—1
Ingsy —Ingysp = 0r + Zﬁj(lngl,t_j —Ingip)+e, t=k+1,.,T+h,
j=h
(14)
where §; is as in (4) and estimation is by the Kalman filter. The interpretation
is that the growth path of the target series that derives from balanced growth
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with the leading indicator is augmented by a stochastic growth component
that might reflect the way the first series and/or the second is measured. A
theoretical case for §; being a random walk, rather than an IRW, is outlined
in sub-sevtion 3.4.

When (13) has been estimated, the residuals may be tested for serial
correlation. The implication of the dynamic specification of d; in (14) is of
a nonstationary alternative. Hence the stationarity test of Kwiatkowski et
al (1992) - the KPSS test - can be used; see Harvey and Thiele (2020) for a
discussion of these issues in the context of balanced growth.

3.1 Predictions
The predictions for the logarithms of the growth rate in model (14) are

k

ln/g\2,T+€|T = 5T+j\T + ZB] lngl,T—i—ﬁ—j? l= ]-7 ceey h7 (15)
j=h

with Bk =1- Zj#k Bj and 747 = drir + Yyl When §; = 4§, as in (13),

d74+gr = 9. The predictions for g, 7147 can be converted into predictions for
Y2.r+¢ by inserting into (6). Solving the recursions with fip = Y7 as in (7)
yields

-1
Dorvar = YarGoror | [(1+Gorism), £=2,3,.. (16)
j=1

and @\Q’T_i_l‘T = Y27T§2,T+1‘T. The construction of prediction intervals remains
a topic for future research.

3.2 Italy and the UK

Figure 4 shows the daily deaths in Italy and the UK from March 1st to June
20th, 2020; data sources are given in the Appendix. Italy clearly leads the
UK but the relationship is captured more precisely in Figure 5 which shows
the logarithms of the growth rates (LDL) of total deaths.

Subtracting LDL Italy from the LDL UK for data from 16th March and
estimating the mean, with daily? dummy variables included, gives 0.686. A

’The data is for when the deaths are recorded rather than when they occur. Series
based on date of death would not have the daily pattern but are difficult to obtain.
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Figure 4: Daily deaths in Italy and UK

rough estimate of the slope, v, obtained by fitting a time trend to LDL Italy
is 0.05, so equation (10) suggests a lag close to 14 days. A lag of 14 is not
inconsistent with prior information and it has the attraction of lining up the
days of the week in the two countries. Figure 6 shows the LDL series with
Italy lagged by 14 days together with the contrast between the two countries
obtained by subtracting Italy from the UK.

A regression model was estimated with daily dummy variables included
and lags with the constraint that the coefficients sum to one imposed as in
(13). A model with lags of 14 and 13 emerged as the best fit. The results
were: (5 = 0.567 (0.099), implying 3., = 0.433, together with 6 = —0.158
and the following diagnostics®: DW = 2.00, Q(14) = 11.89, BS = 7.67
and H = 2.00. When lags at 12 and 15 were included they were small and
statistically insignificant.

3DW is Durbin-Watson, Q(P) is Box-Ljung with P autocorrelations, BS is the Bowman-
Shenton normality statistic and H is a heteroscedasticity statistic constructed as the ratio
of the sum of squares in the last third of the sample to the sum of squares in the first
third. Numbers in parenthesis after estimates are standard errors.

10
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Figure 7: Florida: LDLDeath and new cases lagged 21 days.

3.3 Deaths and New Cases in Florida

Daily cases of Covid-19 in the US state of Florida peaked in early April.
There was then a decline following a lockdown during April. After April
restrictions were eased and there was a leveling out in May, followed by a
sharp rise in June. This second wave poses a challenge for a model in which
new cases are used as a leading indicator for deaths.

Aside from the model having to deal with a situation where new cases
and deaths have fallen before rising again, there is the problem that the basis
on which new cases are recorded changes over time. At the beginning of the
pandemic, new cases in many countries were primarily hospital admissions,
but over time testing became more widespread. A balanced growth model
assumes that the growth rate in deaths is the same as the growth rate in
new cases. When this does not hold the inclusion of a stochastic trend in the
model offers a way of dealing with the discrepancy. In the case of Florida
there was an increase in testing in May, although the growth rate in tests
was roughly constant from the end of May onwards. This suggests that the
growth rate of confirmed new cases may still be a good indicator of the path
of new infections.

Figure 7 shows the logarithms of the growth rates of total new cases and
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deaths, with the former lagged by 21 days. The observations are from March
29th to July 19th 2020 inclusive. The choice of 21 days is convenient because
of the strong day of the week effect.

After some experimentation with different lags it was found that a lag
centred on 18 days is better than one centred on 21. A balanced growth
regression model with a constant and lags on either side of 18 gave weights
of 0.271 (0.123) for 17 and 0.249 (0.115) for 19, leaving 0.480 for 18. The
fit was good but a high Q-statistic - Q(15) was 40.89 - indicates residual
serial correlation. The sample autocorrelations are very persistent and slow
to die out; see Figure 8. Including a deterministic time trend in the model
makes very little difference as the coefficient is very small and statistically
insignificant with a p-value of 0.82. By contrast, a stochastic slope, with an
estimated g¢ of 0.00011, removes the serial correlation as Q(16)=7.73. How-
ever, there is only a small improvement in the fit as measured by prediction
error variance, which is 0.247 with the stochastic slope and 0.259 without. A
random walk trend - the stochastic level model - is better in that it reduces
the prediction error variance to 0.237. The signal noise ratio, ¢, = 037 /o2,
is 0.0041 and the lag coefficients at 17 and 19 are 0.265 (0.122) for 17 and
0.256 (0.113) for 19. Estimating an unrestricted stochastic trend confirms
the choice of the random walk because the slope variance is zero and the
estimated (constant) slope is small and statistically insignificant.

Figure 9 compares the leading indicator forecasts of the logarithm of the
growth rate of deaths in the regression model (without the slope), together
with the forecasts made from a univariate model and the actual observations
up to, and including, 12th August. Corresponding predictions of daily deaths
can be made with (16). The univariate forecasts overshoot because the esti-
mate of v, is positive. It needs to be negative for the forecasts to eventually
start moving down; see the examples and discussion in HK. The forecasts
obtained with the stochastic slope leading indicator model are very similar
to those with no slope, as are those with the stochastic level model. The fact
that a simple regression model works so well here is rather surprising, but
this may not always be the case and the stochastic level model is likely to be
the default option.

There is clearly scope for experimenting with more models within the
same framework, perhaps with data from other regions. For example, notwith-
standing the earlier comments about the constancy of the lag(s) being de-
pendent on a balanced growth model, it may be worth investigating the
forecasting performance of an unrestricted regression model. On the data

13
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Figure 8: Residuals and associated correlogram from balanced growth re-
gression model fitted to new case and deaths in Florida

-25 - [— ForAiDeathNoS - LDLFADeath
""""" L DL A DeathForc
30
35| {,\
N
i
-4.0 - /\‘l I
/ | /\l'
/ ’/ \V
-4.5 - \l |
|/
|/
5.0 [ i
|ll
\
2000628 75 AT) PRI 7% g2 gg

Figure 9: Logarithms of growth rate of deaths in Florida with leading indi-
cator forecasts without the slope and univariate forecasts

14



side, there is scope for bringing other variables, such as the total tested, into
the model.

3.4 Nowcasting and forecasting of the growth path and
R

So far the leading indicator models have been used to forecast future observa-
tions of a target series, but often what is required is a nowcast or forecast of
Gy.t, its growth rate. This is important for tracking the direction in which an
epidemic is moving and, if required, it can be translated into an estimate of
the instantaneous reproduction number R;; see Wallinga and Lipsitch (2008).
In a univariate model, Harvey and Kattuman (2020b) use filtered estimates
of g,+ = g: — 7, to track the progress of an epidemic. A corresponding esti-
mator of R; can be constructed in a number of ways, but the most practical
are B B

Ryir =1+7g,4 and Ry, = exp(Tgy), (17)

where 7 is the generation interval, which is the number of days that must
elapse before an infected person can transmit the disease.

Here the aim is to find a way of estimating g, for the period t = T" —
k,...,T by combining the information in the target series with that in the
leading indicator. More specifically the trend in the target series, deaths,
gives a coherent measure of the daily growth rate, and hence R;, but one
subject to a delay. The information in confirmed cases is more up to date
but it may not yield a consistent time series. The hope is that by combining
the two series a better measure of the current growth rate can be extracted.

The model is

lnglt = 62t+5t+€1t7 t= 1,....,T7 (18)
1ng;t = 52t+52ta t= ]-7""7Ta
where Ing;, = Ingasp, ¢ = 1,....,T. Thus the last k observations on Ing;,

are missing. The stochastic trend, d9;, models the underlying movements
in g, by an IRW, as in Harvey and Kattuman (2020b), whereas ¢; is a
stochastic component that captures the deviations of the first series from
balanced growth. All disturbances, including ;; and e5;, are Gaussian and
assumed to be mutually as well as serially independent.

A convenient model for J; is the first-order autoregression, d; = ¢d;_1+;,
where ¢, is NID(0,0%). When [¢| < 1, the series are co-integrated with

15



balanced growth as In g5, — In g1y = —d; + €91 — £14; note the similarity (apart
from the sign of §;) to (14). However, the RW, when ¢ = 1, will be the most
likely option. Estimation of (18) is by state space methods as in Harvey and
Chung (2000). The Kalman filter and smoother provides smoothed estimates
of 03¢ and 75, with the (filtered) estimates at ¢ = T giving the nowcast, g, r/r.
As new observations become available the nowcast may be updated by the
Kalman filter. The hope is that the IRW specification for d,; enables it to
separated from the movements in d; when the latter is a random walk.
Harvey and Kattuman (2020b) show that Cls for g,, and R, may be
constructed for a univariate model when the growth rate of the total, g;, is
relatively small and the same is true here. Unfortunately g; cannot be ignored
when the epidemic is growing rapidly as might be the case in a second wave.

4 The effects of policy interventions

This section shows how the time series models can be used to assess the
effects of policy. The first example uses univariate time series modelling,
while the second builds on the analysis of bivariate series in sub-section 2.4.

4.1 What if lockdown in the UK had been a week ear-
lier?

The UK went into full lockdown on March 23rd. Can we estimate how many
deaths could have been saved if it had been a week earlier?

A slope intervention in (2) enables the effect of a policy which changes
to be evaluated. Thus

lngtzlnnfl—i_d_’yt_ﬁtwt—i_gta tzl?"'7T7 (19)

where w; are intervention dummies. When the full effect is realized, the slope
on the time trend will have moved from + to v + 5. A positive 3 lowers the
growth rate, g;, the peak of the incidence curve and the final level. The
intervention dummies can be constructed from a logistic CDF. This yields a
response curve W (t) = 1/(1 + vl exp(—~!(t — t!)), where t! is the median.
With t¥ and Y denoting the beginning and the end of the time span during
which the response to the intervention occurs, w; = 0 for t < t¥ w;, = W (t)
fort=tl th+1,. ¢, Y andw, =1fort =tV +1,..,T.
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HK fitted the static model in (19) to new cases in the UK, with an
intervention starting on March 26th and ending on April 12th, using data
from the beginning of March up to April 29th. The result was an estimate of
S equal to 0.020 (0.004) and an estimate of 7 also equal to 0.020. The overall
effect* is a new slope of 0.041. The trend, with the intervention included, is
shown by the dashed line in Figure 10.

The effect of implementing lockdown restrictions a week earlier can be
estimated by shifting the intervention response forward by one week so it
starts on March 19th, rather than on March 26th. The adjusted trend in the
logarithm of the growth rate is then

Ing; =6 —~t - ptw,,,, t=1,.,T. (20)

Once the effect of the intervention has worked itself through, the new slope
is the same as before, as can be seen in the solid line in Figure 10.
The predicted final total is

F == i exp(exp dryr/ (exp yryr — 1))

where T is April 12th. For the actual data, pu, can be approximated by
Y. For the early lockdown scenario, pp will be smaller because the growth
rate falls earlier. This implies that the level on March 18th is multiplied
by exp(>_ ¢;), where the summation is over the period from March 19th to
April 12th. To ensure comparability, the actual level on April 12th is best
estimated in the same way, rather than by Y. Thus an estimate of the ratio
of the total number of cases for a hypothetical early lockdown to the actual
total is given by

Hypothetical exp(_ g;) _exp(D_exp(d — vt — ftw,,,))
Actual — exp(dY.g;)  exp(dexp(6 — At — Btw,))

This ratio is 0.551 implying that the number of infections, as measured by
data on daily coronavirus hospital admissions, could have been almost halved
by an earlier lockdown. If a constant proportion of those admitted die,
the implication is that deaths could have been almost halved by an earlier

4When the slope was allowed to be stochastic, the estimate of 3 was reduced to 0.014
(0.006), but with such a small sample size, a stochastic slope risks some confounding with
the intervention variable.
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Figure 10: Estimates of logarithm of growth rate of total cases in UK with
a logistic intervention and a daily effect

lockdown®. This conclusion is not too different from ones obtained by other
methods. For example, the BBC reported on 10th June that Professor Neil
Ferguson of Imperial College told a committee of MPs: ‘Had we introduced
lockdown measures a week earlier, we would have reduced the final death toll
by at least a half.’

4.2 Fewer deaths in Sweden with a full lockdown ?

Sweden did not opt for the full lockdown that other European countries
imposed in March. Restrictions were minimal: the government recommended
frequent handwashing, working from home, self-isolation for those who felt ill
or were over 70 and social distancing®; see, for example, Kamerlin and Kasson
(2020). Did this policy lead to the number of deaths being significantly higher

5Tt should be stressed that these findings relate specifically to the effect of the full
lockdown of March 2020. A full lockdown imposed now is unlikely to have the same
impact because the environment is different in that socal distancing restrictions are in
place, behaviour has changed and the risk to care homes is better understood,

6Carl Bildt, a former prime minister, was quoted as saying “Swedes, especially of the
older generation, have a genetic disposition to social distancing anyway.”
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Figure 11: Daily deaths in Sweden (lower line), UK (highest line) and Italy
from 18th March to 22nd July

than it might have been under a full lockdown? To answer this question
we need to determine the growth path that Sweden would most likely have
followed under a hard lockdown.

Figure 11 shows daily deaths in Sweden, UK and Italy (lagged 14 days)
from 18th March to 22nd July; by the end of July numbers had become small.
A comparison of actual and potential growth paths has to be based on the
logarithms of growth rates of the cumulative total for the reasons discussed
earlier. Because the day of the week effect is very strong, particularly in
the UK, the logarithms of growth rates were smoothed with a seven day
moving average, centred on the fourth day. The graph in Figure 12 shows
that Sweden initially fell at the same rate as the UK and Italy but then
started to diverge around 24th April, about a month after the UK lockdown
began on March 23rd.

If Sweden had kept on the same growth path as the UK and Italy there
would have been fewer deaths. An estimate of the number of deaths under
this alternative scenario is given by reference to the forecasting equations,
(5) and (6). Let ¢t = m denote the date of divergence and let J; denote the
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Figure 12: Seven day moving averages of the logarithms of the growth rate
from March 18th to July 22nd

values of d; estimated for the lockdown growth path using the data on UK
and Italy. Since the moving averages are quite smooth, J; was constructed
as a simple average of the two countries’, rather than by RLS as in Harvey
and Thiele (2020). Then

ﬁm—i—j = //zm—l—j—l(l + /g\m—O—j) = //zm—l—j—l €xp 5m+j7 .] = 17 27 <oy T —m. (21)

The initial value is p,, = Y,,, or a weighted average around that point.
Solving the recursion gives

— T—m
Yr H + Gmtj) = Yy exp Z Ot (22)

as the estimated total number of deaths, up to time 7', under the lockdown
scenario. The estimated number of deaths after time m is Y —Y,,, while the

"The general methodology, as set out in Harvey and Thiele (2020), is to select a set
of controls from a donor pool by using the KPSS test to determine which series are on a
balanced growth path with the target. The control group weighting is then determined by
RLS.
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actual is Y7 — Y,,. Here T is July 22nd; the number of deaths after that is
relatively small.

The total on April 24th was 2236 and using formula (22) gives an estimate
of 4062 for July 22nd as opposed to an actual figure of 5722, a difference of
1660. The sensitivity to the initial value can be gauged by noting that the
estimates using the totals two days before and two days after April 24th are
3808 and 4378 respectively.

One way of reducing the dependence on the starting value is to estimate
the underlying total for Sweden using formula (22) with g,,+; replaced by
the actual Swedish values. This gave a total of 5657. The ratio of Yy for
the lockdown control group to that of Sweden is 1.816/2.530 = 0.718. For
?T —Y,, it is 0.816/1.530 = 0.533. This implies that the actual increase
from April 24th, which was 3486, could have been 1902. The first method
gave 4062 — 2236 = 1826. The overall conclusion is that, between April 24th
and July 22nd, there were perhaps forty to forty-five per cent more deaths
than there might have been under a more stringent lockdown of the kind
implemented in the UK and Italy.

It is worth noting that although Sweden may have had more deaths under
its soft lockdown, this does not mean a higher death rate than countries which
had a hard lockdown. On Sept 4th, the figures for deaths per one million
for Sweden were 577 as against 611 for the UK and 587 for Italy. The rates
for Denmark, Norway and Finland were 108, 49 and 61 respectively, but this
should not lead one to infer that the soft Swedish lockdown resulted in a
death rate of perhaps ten times what it might have been.

The number of deaths in Denmark is too small to allow a full analysis
based on the logarithms of growth rates. The variability is high and after
mid-May there are often days when no deaths occur. Numbers in Norway
and Finland are lower still. However, up to the end of April the logarithm of
the growth rate for Denmark is informative. Figure 13 shows the logarithms
of the growth rates for Sweden, Italy, UK and Denmark. Denmark is on a
similar growth path to that of the other countries but it is lower than the UK
because coronavirus may have arrived earlier and lockdown was imposed on
March 13th; the gap is consistent with Denmark leading the UK by about
a week. During this period deaths in Denmark were much lower than in
Sweden even though they were on the same growth path until close to the
end of April. This difference therefore seems to be for reasons not directly
connected to the policies of the two countries on lockdown.
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Figure 13: Seven day moving averages of the logarithms of the growth rate
from March 18th to April 30th.

On April 30th 2714 deaths had been recorded in Sweden as against 443
in Denmark, a ratio of 6.13. On April 24th the figures were 2236 and 394, a
ratio of 5.68. (But bear in mind that the population of Sweden is 1.76 times
that of Denmark so in per capita terms the ratio is closer to three.) On July
22nd the ratio of Swedish to Danish deaths had risen to 9.36. However, the
ratio of the lockdown estimate of 4062 to the 611 Danish deaths is only 6.64
which is not far from the ratio at the end of April. Thus the estimate of
the number of deaths obtained using the control group seems quite plausible.
The conclusion is that for reasons unconnected with lockdown policy the
death rate per head in Sweden was about three and a half times that in

Denmark. The less stringent lockdown then raised this ratio to nearly five
and a half.

5 Conclusion

The main aim of this article has been to provide a methodological framework
for the statistical analysis of the relationship between time series of the kind
that are relevant for tracking and forecasting epidemics and analysing the
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effects of policy.

The growth path of an epidemic is best captured by the logarithm of the
growth rate of the cumulated series. This may be modelled by a stochastic
trend. When two series are on a balanced growth path, leading indicator
regression models estimated by restricted least squares can be used to fore-
cast. The relationship between deaths from coronavirus in the UK and Italy
provides a good example of balanced growth with deaths in Italy being able
to provide forecasts for deaths in the UK up to thirteen days ahead. The
balanced growth model may be extended by including a stochastic trend
component. The stochastic trend, best specified as a random walk, removes
the residual serial correlation found in the regression model linking deaths to
new cases in Florida. However, for both models, the forecasts made before
the downturn in the series are remarkably successful in picking up the subse-
quent downward movement. From the practical point of view, such models
may be useful for forecasting hospital admissions® as well as deaths.

Leading indicators can also be used to improve estimates of the daily
growth rate of an epidemic and the associated R;. A bivariate state space
model is proposed with a study of its effectiveness being a topic for future
research.

Policy evaluation can be carried out by using some series as control groups
for others. A common trend or, better still, balanced growth is the key
ingredient. The evaluation of the Swedish policy response to coronavirus
provides an example of the methodology. It is shown that the average of the
growth paths of deaths in the UK and Italy yields a suitable control group
for deaths in Sweden. The Swedish growth path is initially the same as those
of the UK and Italy but it diverges as the effectf of the lockdowns in the
UK and Italy start to impact daily deaths. The difference in the growth
paths then enables the implications of the Swedish soft lockdown policy to
be assessed. The analysis suggests? an increase in the number of deaths of
the order of forty to forty-five per cent compared with what there might have
been under a more stringent lockdown of the kind implemented in the UK
and Italy.

8In the UK, and many other countries, the data on new cases in the early months of
the epidemic was only for the most severe cases, primarily those admitted to hospital. It
is only with more widespread testing that new cases start to have potential for predicting
hospital admissions.

9A degree of caution is needed because of revised figures and different definitions of
what constitutes a Covid-19 death.
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A Data sources

The data for European countries was obtained from the European Centre for
Disease Prevention and Control (ECDC) website, https://www.ecdc.europa.eu/en/publications-
data/download-todays-data-geographic-distribution-covid-19-cases-worldwide,.
For Florida the source was : https://covidtracking.com/data. The data were
obtained at the end of August and the beginning of September. Data can be
subject to revisions. For example the UK definition of deaths was changed
in August to include only people who had a laboratory-confirmed positive
COVID-19 test and had died within 28 days of the date the test result was
reported. Before that it included anybody who had ever tested positive for
COVID-19 no matter how long before the actual death.

Case-fatality statistics in Italy are based on defining COVID-19-related
deaths as those occurring in patients who test positive for SARS-CoV-2
viaRTPCR, independently of preexisting diseases that may have caused death.
This method may have resulted in overestimation; see Onder (2020).
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