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Abstract

We provide a way to represent spatial and temporal equilibria in terms
of error correction models in a panel setting. This requires potentially two
different processes for spatial or network dynamics, both of which can be
expressed in terms of spatial weights matrices. The first captures strong
cross-sectional dependence, so that a spatial difference, suitably defined, is
weakly cross-section dependent (granular) but can be nonstationary. The
second is a conventional weights matrix that captures short-run spatio-
temporal dynamics as stationary and granular processes. In large sam-
ples, cross-section averages serve the first purpose and we propose the
mean group, common correlated effects estimator together with multiple
testing of cross-correlations to provide the short-run spatial weights. We
apply this model to the 324 local authorities of England, and show that
our approach is useful for modelling weak and strong cross-section de-
pendence, together with partial adjustments to two long-run equilibrium
relationships and short-run spatio-temporal dynamics. This exercise pro-
vides new insights on the (spatial) long run relationship between house
prices and income in the UK.
JEL Codes: C21, C22, C23, R3.
Keywords: Spatio-temporal dynamics; Error Correction Models; Weak
and strong cross sectional dependence.

1 Introduction

The (temporal) error correction representation theorem of Engle-Granger clar-
ifies the role of long run equilibrium, partial adjustment to disequilibrium and
short-run dynamics. Here, we develop error correction models, first for a spa-
tial or network framework, and then for a spatio-temporal framework, to study
short and long-run dynamics of spatial or network panel data over time and
space.

∗Corresponding author: a.bhattacharjee@hw.ac.uk. 1: Heriot-Watt University and Na-
tional Institute of Economic & Social Research, UK. 2: Free University of Bozen-Bolzano,
Italy, and Center for Energy Economics Research and Policy (CEERP), Heriot-Watt Univer-
sity, Edinburgh, UK. 3: Faculty of Economics, University of Cambridge, UK.

1



Both representations offer simple interpretation as error correction models
analogous to the temporal case. Specifically, in a spatio-temporal setting and
under some simplifying assumptions, there is partial adjustment to two equilib-
rium relationships: one in the time dimension and the other in the cross-sectional
dimension.1 This simplification relies on two homogeneity assumptions. The
first is the familiar pooled mean group assumption (Pesaran et al., 1999) of a
homogeneous temporal equilibrium relationship across all the panel units, and
the second is an analogous cross-sectional equilibrium homogeneous over time.2

However, the spatial and temporal equilibria are closely connected. Because the
model is discrete, disequilibrium in the spatial dimension requires adjustments
over time.

Furthermore, our work highlights how the spatial equilibrium can be mod-
elled using, for example, common correlated effects (Pesaran, 2006) which incor-
porates strong cross-section dependence. Much of the existing literature treats
strong dependence, modelled using common correlated effects (CCE) or cross-
section averages, as nuisance parameters. Our spatio-temporal ECM shows how
these strong dependence effects can be structurally interpreted.

Once strong dependence is adequately modelled, remaining weak dependence
at the local, spatial level3 means partial adjustment to long run equilibrium, for
which the current literature provides several estimates of spatial weights matri-
ces. In general, this weak dependence spatial weights matrix is not fully identi-
fied (Bhattacharjee and Jensen-Butler, 2013), but it can be estimated under al-
ternate identifying assumptions (Bhattacharjee and Jensen-Butler, 2013; Bhat-
tacharjee and Holly, 2013; Bailey et al., 2016). Applying our spatio-temporal
model to house prices at the local authority level in England, we find evidence
of temporal and spatial cointegration, as well as substantial short run dynamics
which we model by multiple testing on cross-section correlations (Bailey et al.,
2016).

The mathematical notation for the remainder is as follows: lowercase letters
refer to scalars (yi,t), bold lowercase (yt) to vectors and bold upper case (W)
to matrices. We denote temporal first difference by ∆ and spatial difference by
∆ = I −W, where I is the identity matrix and W is a spatial (or network)
weights matrix. Then, Wy denotes the spatial lag of y. The remainder of
the paper is organised as follows. In Section 2, we develop a spatio-temporal
Engle-Granger representation and the corresponding error correction model,
and then rstimate this in a spatio-temporal setting in Section 3. We develop an

1The cross-sectional dimension is notionally located either in a spatial context or within
a network. Hereafter when we refer to the spatial dimension we mean a network as well.
Networks can be spatial but there are many networks between households, peers and firms
that are not spatial in a geographical sense. However, the network architecture itself can be
viewed as connections in an abstract spatial domain.

2The familiar pooled mean group assumption (Pesaran et al., 1999) restricts the tempo-
ral long-run equilibrium relationship to be homogeneous across all the cross-sectional units.
Likewise, the corresponding spatial long-run homogeneity assumption requires the equilibrium
relationship across the spatial domain to remain the same throughout the period under study.

3The term “local” is with respect to the weights matrix and does not necessarily imply
geographically proximate locations.
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application to UK house prices in Section 4 and Section 5 concludes.

2 Spatial and Spatio-Temporal Error Correction
Models

In this section we describe a spatio-temporal error correction model. First, we
define the spatial, second, the temporal equilibrium and finally a combination
of the two. We start with a model with one lag of the dependent variable and
the contemporaneous and the first lag of the explanatory variable. In addition
to the above temporal lags, the model includes a spatial lag of the dependent
and independent variables:

yi,t = βi,0 + βi,1xi,t + βi,2xi,t−1 + αiyi,t−1 (1)

+ πi

N∑
j=1,i6=j

wijxj,t + ρi

N∑
j=1,i6=j

wijyj,t + ei,t

ei,t = γ′ift + εi,t (2)

for i = 1, ..., N and t = 1, ..., T . The error component ei,t contains common fac-
tors ft and their loadings γi which introduces potential strong cross-sectional
dependence and temporal nonstationarity.4 The idiosyncratic random compo-
nent εi,t is an error term with finitely summable autocovariances.

This is a first order spatio-temporal autoregressive distributed lag model. All
coefficients are assumed to be heterogeneous across cross-sectional units. Similar
to the temporal lags xi,t−1 and yi,t−1,

∑N
j=1,j 6=i wijyj,t and

∑N
j=1,j 6=i wijxj,t

are the spatial lags of y and x based on a spatial weights matrix W. For
the moment, we are not explicit about the spatial weights, and since they can
represent both spatial weak and strong dependence, we do not require them to
satisfy the spatial granularity condition of Pesaran (2006).

Both the variables x and y are potentially cointegrated across time and
space. Therefore an error correction model which takes the time and the spa-
tial or network dimension into account can be used to represent the short and
long run relationships. For convenience we re-write the model with the spatial
interactions in matrix form:

yt = (y1,t, ..., yN,t)
′ ; xt = (x1,t, ..., xN,t)

′ (3)

wi = (wi,1, ..., wi,N ) (4)

with

wi,i = 0, for i = 1, ..., N (5)

4Without loss of generality we assume only a single common factor. The model can be
extended to multiple factors, see for example Pesaran (2006) and Chudik and Pesaran (2015).
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and we assume that:

N∑
j=1

wi,j = 1 (6)

The above assumption implies that the spatial weights matrix W is row-
normalised. Together with fixed spatial weights5 inherent in (1), this assumption
ensures that the spatial weights matrix W = ((wi,j))N×N has bounded row
and column norms as N → ∞. This is analogous to the spatial granularity
condition and weak cross-sectional dependence in Pesaran (2006). Note that we
allow for potentially negative spatial weights, which can be important in many
applications (Bhattacharjee and Holly, 2013; Bailey et al., 2016). An analogous
relationship holds for x. Then the model in (1) can be written as:

yi,t =βi,0 + βi,1xi,t + βi,2xi,t−1 + αiyi,t−1 + πiwixt + ρiwiyt + ei,t. (7)

In the spatial equilibrium, cross-sectional units have the same values for each
time period:

xi,t =xj,t = x∗t (8)

yi,t =yj,t = y∗t

and since
∑N

j=1,i6=j wij = 1, then

N∑
j=1,i6=j

wijx
∗
t = x∗t (9)

N∑
j=1,i6=j

wijy
∗
t = y∗t .

Two important points are in order. First, in the above, for simplicity of
exposition, and without loss of generality, we made the assumption that the
spatial long run relationships are:

N∑
i=1

xi,t = cx,t

N∑
i=1

yi,t = cy,t,

which implies that the long run weights matrix is

W =
1

N
11′ − I,

5By “fixed”, we mean that the spatial weights are fixed numbers, for a given sample size
n, that is, they are non-stochastic.
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where 1 is a T ×1 vector of ones. This is consistent with the use of cross-section
averages to model strong dependence (Pesaran, 2006). This simplification is
without loss of generality, because if the long run W has some other form,
one can scale y and x to set the value at each location equal to its spatial lag.
One can also model spatial strong dependence using other methods, for example
statistical factors, principal components or interactive fixed effects (Bai and Ng,
2007; Bai, 2009). However, following Pesaran (2006), cross-section averages are
adequate in large (N,T ) settings.

Secondly, the discussion highlights also that there can be a distinction be-
tween the strongly dependent temporal and the weakly dependent spatial weights
matrices. We use cross-section averages to represent the temporal relationships
for simplicity of exposition, retaining the notation W for the weakly dependent
(or granular) spatial dynamics. However, in our application, we fully exploit the
flexibility of specifying weights matrices for the spatial and temporal dynamics.

Coming back to the derivation of the spatial error correction model, substi-
tuting the equilibrium values from (9) into equation (7) yields:

y∗t =βi,0 + βi,1x
∗
t + βi,2x

∗
t−1 + αiy

∗
t−1 + πiWix

∗
t + ρiWiy

∗
t−1 (10)

=βi,0 + (βi,1 + πi)x
∗
t + βi,2x

∗
t−1 + αiy

∗
t−1 + ρiy

∗
t

⇒ y∗t =
βi,0

1− ρi
+
βi,1 + πi
1− ρi

x∗t +
βi,2

1− ρi
x∗t−1 +

αi

1− ρi
y∗t−1 (11)

=
βi,0
λi

+ γix
∗
t + ηix

∗
t−1 + δiy

∗
t−1

The final step defines the parameter values in the spatial equilibrium. De-
noting by λi as the spatial equilibrium effect of y, γi the spatial equilibrium
effect of x, δi the temporal equilibrium effect of y and ηi of x:

λi = 1− ρi δi =
αi

λi
(12)

γi =
βi,1 + πi

λi
ηi =

βi,2
λi

(13)

Next, we define the spatial first difference as ∆xi,t = xi,t − wixt. The
spatial first difference is analogous to the temporal first difference for time series.
However, whereas in the time dimension the (causal) ordering is evident, the
ordering in a spatial context is less clearly defined. The spatial weight matrix
specifies a partial ordering since it assigns non zero values only to those cross-
sectional units which are related to each other. Analogous to the first time
difference, spatial first differencing removes potential non-stationarity in the
spatial dimension. We will refer to stationarity in the spatial dimension as
granularity (Chudik et al., 2011). Granularity implies that the location of a
unit within a space or a network is arbitrary and none of its connections to
and from other units are dominating. This in turn implies weak cross-section
dependence.
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We use the long run coefficients from equation (12) and (13) to derive the
spatial error correction model.

yi,t =βi,0 + βi,1xi,t + ηiλixi,t−1 + (γiλi − βi,1)wixt + δiλiyi,t−1 (14)

+ (1− λi)wiyt + ei,t

yi,t −wiyt =βi,0 + βi,1 (xi,t −wixt) + λiηixi,t−1 + γiλiwixt (15)

− λiwiyt + δiλiyi,t−1 + ei,t

∆yi,t =βi,0 + βi,1∆xi,t − λi (wiyt − γiwixt) (16)

+ λiηi (xi,t−1 + δi/ηiyi,t−1) + ei,t

Equation (16) is an ECM in a combined spatial and temporal dimension. It
has one cointegrating relationship between the spatial lags of x and y. Anal-
ogously to a temporal ECM, λi defines the spatial equilibrium effect, or the
spatial cointegration vector. The second term encompassed by λiηi, that is
(xi,t−1 + δi/ηiyi,t−1) refers to the temporal cointegration relationship. Next,
we derive the conditions necessary for a pair of time and space equilibria to
exist.

In the temporal equilibrium the value of the variables x and y is constant
across the time dimension, such that:

yi,t = yi,t−1 = y∗i xi,t = xi,t−1 = x∗i (17)

wiyt = wiyt−1 = wiy
∗ wixt = wixt−1 = wix

∗ (18)

Using the temporal equilibrium conditions and equation (16) yields:

y∗i =βi,0 + βi,1x
∗
i − βi,1wiy

∗,+λiwiy
∗,−λiwiy

∗ (19)

+ λiηix
∗
i + λiγy

∗
i + wiy

∗

y∗i =
βi,0

1− λiδi
+
βi,1 + λiηi
1− λiδi

x∗i +
λiγi − βi,1
1− λiδi

wix
∗ +

(1− λi)
1− λiδi

wiy
∗ (20)

=
βi,0
φi

+ κix
∗
i + ωiwix

∗ + µiwiy
∗ (21)

Analogous to the spatial equilibrium, we have the following coefficients under
spatio-temporal equilibrium:

φi = 1− λiδi κi =
βi,1 + λiηi

φi
(22)

µi =
1− λi
φi

ωi =
λiγi − βi,1

φi
(23)

Here, µi and ωi capture the effect of the spatial lag and κi the effects of the
explanatory variable in the spatio-temporal equilibrium. Equations (22) and

6



(23) imply:

κiφi − λiηi = ωiφi − λiδi (24)

φi (κi + ωi) = λi (ηi + γi) (25)

Plugging the equilibrium coefficients into equation (16) gives us the spatio-
temporal ECM:

∆yi,t =βi,0 + βi,1∆xi,t + λi (γiwixt −wiyt) (26)

+ κiφixi,t−1 − βi,1yi,t−1 + (1− φi) yi,t−1 + ei,t

=βi,0 + βi,1∆xi,t + λi (γiwixt −wiyt) (27)

+ φi (κxi,t−1 − yi,t−1)

+ yi,t−1 − βi,1xi,t−1 + ei,t

=βi,0 + βi,1∆xi,t − λi (wiyt − γiwixt) (28)

+ βi,1∆xi,t − φi (yi,t−1 − κixi,t−1)

+ yi,t−1 − βi,1xi,t−1 + ei,t

yi,t −wiyt − yi,t−1 = βi,0 + βi,1 (xi,t −wixt − xi,t−1) (29)

− λi (wiyt − γiwixt)

− φi (yi,t−1 − κxi,t−1) + ei,t

Equation (29), the spatio-temporal ECM, is a central contribution of this
paper. It is new to the literature and expresses precisely the nature of spatio-
temporal short run dynamics and partial adjustment to the spatial and temporal
long run equilibria. The short run effect is βi,1, φi is the speed of error correction
or the partial adjustment to the temporal long run equilibrium, and λi is the
partial adjustment to the spatial long run equilibrium.

However, the term on the left hand side and the term capturing the spatial
dynamics are not very informative. To provide better interpretation, we define
joint spatio-temporal differencing as yi,t− yi,t−1−wiyt +wiyt−1 = ∆∆yi,t and
the equivalent for ∆∆xi,t. The ∆∆ notation takes out first order nonstationarity
across the two dimensions, space and time. It is equivalent in time series to
transforming an I(1) process into a stationary I(0) by taking first differences
across time. Here, the joint differencing is interpreted as temporal first difference
of spatial difference, or vice versa.

Using this notation and adding on both sides wiyt and wixt transforms
equation (29) into:

∆∆yi,t = βi,0 + βi,1∆∆xi,t + (wiyt−1 − βi,1wixt−1) (30)

− λi (wiyt − γiwixt)− φi (yi,t−1 − κixi,t−1) + ei,t,

λi (wiyt − γiwixt) represents the spatial and φi (yi,t−1 − κixi,t−1) the tem-
poral error correction term. However both terms are still potentially nonsta-
tionary with respect to the other dimension. We can rewrite the temporal long
run relationship as
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yi,t−1 − κixi,t−1 = ∆yi,t−1 − κi∆xi,t−1 + wiyt−1 − κiwixt−1 (31)

and the spatial long run relationship as

wiyt − γiwixt = wi∆yt − γiwi∆xt + wiyt−1 − γiwixt−1 (32)

Then (30) is transformed as:

∆∆yi,t =βi,0 + βi,1∆∆xi,t + (wiyt−1 − βi,1wixt−1) (33)

− λi (wi∆yt − γiwi∆xt + wiyt−1 − γiwixt−1)

− φi (∆yi,t−1 − κi∆xi,t−1 + wiyt−1 − κiwixt−1) + ei,t

=βi,0 + βi,1∆∆xi,t − φi (∆yi,t−1 − κi∆xi,t−1)

− λi (wi∆yt − γiwi∆xt)

+ wiyt−1 (1− λi − φi)−wixt−1 (β1,i − λiγi − φiκi) + ei,t

=βi,0 + βi,1∆∆xi,t − φi (∆yi,t−1 − κi∆xi,t−1)

− λi (wi∆yt − γiwi∆xt) (34)

+ αiρiwiyt−1 + (πi − β1,i − β2,i)wixt−1 + ei,t

The advantage of equation (34) is that there are two distinct error correction
terms: one capturing the temporal error correction φi (∆yi,t−1 − κi∆xi,t−1) and
the other capturing the spatial error correction λi (wi∆yt − γiwi∆xt). Note
that both these terms are stationary across one dimension and lagged (or spa-
tially lagged) along the other. Then, if there is cointegration, both error correc-
tion terms are stationary across the two dimensions.

The final two terms αiρiwiyt−1 + (πi − β1,i − β2,i)wixt−1 have a strong
dependence interpretation. Specifically as we show in the next section, these
can be encompassed by common correlated effects of yt−1 and xt−1. This
motivates the use of cross-section averages to capture spatial strong dependence,
which in turn is justified in large (N,T ) samples by common correlated effects
(Pesaran, 2006). Hence, in some contexts, it may be appropriate to replace
(wi∆yt − γiwi∆xt) with (∆yt − γi∆xt). Then, these terms can be interpreted
as common correlated effects adjusted for strong spatial dependence. However,
choice of the appropriate long run weights is typically context specific. We will
discuss this issue in our application to UK house prices.

3 Spatio-Temporal ECM, Common Correlated
Effects and Weak Dependence

The spatio-temporal error correction model in equation (34) highlights the im-
portance of three dynamic processes: (a) spatio-temporal, short run dynam-
ics βi,1∆∆xi,t; and partial adjustment to two equilibrium relationships (b)
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temporal error correction φi (∆yi,t−1 − κi∆xi,t−1) and (c) spatial error cor-
rection λi (wi∆yt − γiwi∆xt). If both spatial and temporal equilibria ex-
ist, all the three corresponding regressors ∆∆xi,t, (∆yi,t−1 − κi∆xi,t−1) and
(wi∆yt − γiwi∆xt), as well as the dependent variable ∆∆yi,t, must all be sta-
tionary in the temporal domain and granular (weakly dependent) in the cross-
sectional (spatial) domain. Naturally, achieving this requires adequate choice of
spatial weights for spatial differencing (∆) and spatial lagging/averaging (wi).
The recent literatures on spatial strong and weak dependence and on estimation
of weak dependence spatial weights matrices provide valuable insights in making
these choices.

Pesaran (2006) showed that the common correlated effects (CCE) estimator
achieves weak dependence by approximating factors underlying strong cross-
sectional dependence using cross-sectional averages, ȳt = 1

N

∑N
i=1 yi,t and x̄t =

1
N

∑N
i=1 xi,t. In a spatial equilibrium each cross-sectional unit has the same

influence on all other units, so the spatial weights become wi,j = 1
N ∀i, j ∈ N

and i 6= j. Therefore the spatial lags can be rewritten as wiyt + 1/Nyi,t =

1/N
∑N

i=1 yi,t = ȳt, respectively in their first difference as ∆ȳt = 1/N
∑N

i=1 ∆yi,t
where ȳt is a scalar and the same for all cross-sectional units. We are going to
incorporate the cross-sectional averages into Equation (34) in two steps. In
the first step we replace the spatial lags wiyt−1 with ȳt−1 − 1/Nyi,t−1 and
wixt−1 = x̄t−1 − 1/Nxi,t−1 which then gives:

∆∆yi,t =βi,0 + βi,1∆∆xi,t − φi (∆yi,t−1 − κi∆xi,t−1)

− λi (wi∆yt − γiwi∆xt)

+ αiρi

(
ȳt−1 −

1

N
yi,t−1

)
+ (πi − β1,i − β2,i)

(
x̄t−1 −

1

N
xi,t−1

)
+ ei,t

≈βi,0 + βi,1∆∆xi,t − φi (∆yi,t−1 − κi∆xi,t−1) (35)

− λi (wi∆yt − γiwi∆xt)

+ αiρiȳt−1 + (πi − β1,i − β2,i) x̄t−1 + ei,t

The final step follows for a sufficiently large number of cross sectional units
because ȳt± 1

N yi,t ≈ ȳt and wiyt ≈ ȳt as limN→∞
1
N yi,t = 0. Implicitly equation

(35) relies on several (potentially different) spatial weight matrices. The last
term αiρiȳt−1 + (πi − β1,i − β2,i) x̄t−1 uses cross-sectional averages to take out
strong cross-sectional dependence. Given the asymptotic validity of the Pesaran
(2006) common correlated effects (CCE) estimator, this is a natural choice. This
still leaves the choice of spatial weights to model the short run and long run
relationships. Now, we demonstrate that cross-sectional averages are also a
natural choice for modeling the spatial error correction term. Then, in a second
step we can further replace the spatial lag of the first differences in the spatial
error correction term:
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∆∆yi,t = βi,0 + βi,1∆∆xi,t − φi (∆yi,t−1 − κi∆xi,t−1) (36)

− λi
(

∆ȳt −
1

N
∆yi,t − γi

[
∆x̄t −

1

N
∆xi,t

])
+ αiρi(yt−1 −

1

N
yi,t−1) + (πi − β1,i − β2,i) (xt−1 −

1

N
xi,t−1) + ei,t

For limN→∞
1
N ∆yi,t = 0 and Equation (36) can be then simplified to:

∆∆yi,t ≈ βi,0 + βi,1∆∆xi,t − λi (∆ȳt − γi∆x̄t) (37)

− φi (∆yi,t−1 − κi∆xi,t−1) + αiρiyt−1 + (πi − β1,i − β2,i)xt−1 + ei,t

Equation (37) clearly emphasises the connection between a heterogeneous
panel data factor model (Pesaran, 2006) and our error correction model equation
(34). Suppose we were not concerned with potential spatial cointegration and
the corresponding error correction, but were mainly interested in modelling the
temporal long run relationship along the lines of Pesaran and Smith (1995) and
Pesaran et al. (1999). One would still be concerned with potential cross-sectional
strong dependence and include cross-sectional averages as common correlated
effects to address this issue. In fact, Pesaran (2006) showed that this empirical
strategy is adequate in large samples. Now, since the model includes both short
run dynamics and partial adjustment to a temporal long run equilibrium, one
would need to include four cross-sectional averages in the model: ∆ȳt, ∆x̄t,
yt−1 and xt−1. These are precisely the four cross-section averages included
in equation (37). There are two implications of this observation. First, this
equation can be interpreted as a common correlated effects estimator. In fact,
even better, while coefficients on the cross-sectional averages typically have no
economic interpretation, in our spatio-temporal error correction model, they
have very precise interpretations. Second, this justifies cross-section average
weights as a natural choice for two out of the four spatial weights matrices in
our spatio-temporal error correction model. The choice for the remaining two
matrices remain open, both denoted by ∆ in equation (37). In our empirical
application, we model both using a spatial weight matrix from cross-correlations.

As discussed above, equation (37) contains the contemporaneous values of
the difference of the cross-sectional averages in the spatial error correction term
and first lag of the cross-sectional averages in a separate term. Next, we will
collect the cross-sectional averages which leads to a representation in the fashion
of Pesaran (2006):

∆∆yi,t = βi,0 + βi,1∆∆xi,t − φi (∆yi,t−1 − κi∆xi,t−1)

− λi∆ȳt + λiγix̄t + λiyt−1 − λiγixt−1 + ei,t

= βi,0 + βi,1∆∆xi,t − φi (∆yi,t−1 − κi∆xi,t−1) (38)

+ γi,y,0ȳt + γi,y,1ȳt−1 + γi,x,0x̄t + γi,x,1x̄t−1 + ei,t
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where γi,y,0 = −λi, γi,y,1 = λi +αiρi, γi,x,0 = λiγi and γi,x,1 = πi−β1,i−β2,i−
γiλi. In the literature the nuisance coefficient estimates on the cross-sectional
averages are not interpreted. However, as shown here, they can provide valu-
able insights into the spatial cointegration relationship and partial adjustment.
Furthermore the last equation shows how the CCE estimator (Pesaran, 2006)
accounts for spatially integrated processes and implicitly models cointegration
in a fashion similar to a temporal ECM.

Thus, cross-section average weights capture, for large N and T, the spatial
long run relationship and partial adjustment to it. Often interest also rests
on spatial modelling of the weak dependence part, included in the short run
dynamics, that is, in spatial weights for modelling ∆yi,t and ∆xi,t. Here, we
can draw upon the recent spatial econometrics literature, which shows that an
unrestricted weak dependence W is not identified in general (Bhattacharjee
and Jensen-Butler, 2013). Then, weak dependence can be modelled using one
of several estimators under alternate identifying assumptions: (a) symmetry
(Bhattacharjee and Jensen-Butler, 2013); (b) sparsity (Ahrens and Bhattachar-
jee, 2015; Lam and Souza, 2019); (c) symmetry and sparsity (Bailey et al., 2016);
(d) asymmetric hub-and-spokes network (Bhattacharjee and Holly, 2013); and
(e) recursive ordering (Basak et al., 2018).

For the remainder there are two reasons why we will focus on equation (35)
rather than (38). Firstly, we are interested in estimating the spatial long run
cointegrating relationship λi and the spatial long run coefficient γi. Secondly
assuming a spatial equilibrium is a strong assumption and using cross-sectional
averages in the spatial long run vector can take out too much of the spatial
dependence.

In equation (35) the temporal long run relationship φi (∆yi,t−1 − κi∆xi,t−1)
depends on the cross-correlation spatial weight matrix. The term crucially re-
quires the spatial first differences to be stationary and using the cross-correlation
spatial weights might not be sufficient to do so. Therefore Equation (35) can
be reformulated so it retains the cross-correlation spatial weights for the short
run (∆∆xi,t) and for the long run spatial relationship, but uses cross-section
averages for the long run temporal relationship. To do so, we redefine the
first spatial difference in the temporal long run term (∆yi,t−1 − κi∆xi,t−1) as
∆yi,t = yi,t − ȳt and ∆xi,t = xi,t − x̄t, which then gives us a reformulation of
Equation (35):

∆∆yi,t = βi,0 + βi,1∆∆xi,t − φi
(
∆yi,t−1 − κi∆xi,t−1

)
(39)

− λi (wi∆yt − γiwi∆xt) + αiρiyt−1 + (πi − β1,i − β2,i)xt−1 + ei,t

Equation (39) models spatial dependence using two different spatial weight
matrices. The spatial short run relationship and the spatial long run relationship
depend on the spatial first difference using a spatial weights matrix based on
multiple testing of cross-correlations. The temporal long run relationship is
modelled using cross-sectional averages. Cross-sectional averages are equivalent
to a spatial lag in which all elements of the spatial weights matrix are 1/N
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and the averages represent a spatial equilibrium. The final term αiρiyt−1 +
(πi − β1,i − β2,i)xt−1 further accounts for strong cross-sectional dependence.
In order to remove remaining strong cross-sectional dependence further lags of
ȳt and x̄t can be added following Chudik and Pesaran (2015).

In our application, we explore these two alternatives for modelling the long
run relationship: common correlated effects (Pesaran, 2006) and cross-section
correlations (Bailey et al., 2016). For weak dependence, we employ the estima-
tor proposed in Bailey et al. (2016) based on multiple testing of cross-section
correlations, under assumptions of sparsity and symmetry.

Hence, we propose estimation in two steps. In the first step, we estimate
a simple model regressing y on x using standard panel models for potentially
nonstationary data by including common correlated effects to account for strong
cross-section dependence. After including sufficient temporal lags in this model
to ensure weak dependence of the residuals, as evidenced using the Pesaran
(2015) CD test, we estimate the weak dependence spatial weights by multiple
testing of residual cross-correlations. We then construct ∆∆yi,t and ∆∆xi,t. For
the second step, we estimate the spatio-temporal ECM Equations (35) and (39)
using the mean group estimator (Pesaran and Smith, 1995). Under homogeneity
assumptions on the cointegrating relationships, one can also use the pooled mean
group estimator of Pesaran et al. (1999).

4 An application to house prices in the UK

The interest that many social scientists have in housing reflects, among other
things, the importance it has in household budgets, in the design of social policy
and even in the behaviour of the macro economy. Big differences in the way in
which housing and financial markets function around the world have profound
effects on how output and inflation in the different countries respond to changes
in short-term interest rates, as well as to external shocks to asset markets. An
important aspect of the interaction between the housing market and the macro
economy arises from the link to the labour market as, for example, differences in
the level of house prices between regions within countries lowers labour mobility.

In this section, we develop an application to regional house prices in the UK
based on our spatio-temporal ECM. In related work, Beenstock and Felsenstein
(2010) estimated a spatial Durbin error model for house prices in Israel. While
their focus lies in temporal cointegration, we explicitly model the spatial non-
stationarity and thus a spatial long run equilibrium as well. In doing so, we allow
for spatial short and long run processes using different spatial weight matrices.

4.1 Economic model

There is an extensive literature on the economics of housing and on the determi-
nation of house prices, yet many studies of house prices place more emphasis on
demand compared to supply factors (Olsen, 1987). One reason for this is that
fluctuations in house prices observed in many countries over time have the most
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immediate consequences for macroeconomic performance, reflecting factors on
the demand side that trigger shifts along a very inelastic short run supply curve.
However, if there is also an interest in the lower frequency movement of house
prices, an analysis of how forces on the supply side impact upon house prices
could be useful.

This is not to suggest that the theoretical literature has neglected supply side
factors. The best known, and most elegant, models of the housing market derive
the demand for housing from a well articulated utility maximising framework
and allows the stock of housing to evolve in a similar manner to the practice
in the modern literature on economic growth (Muth, 1976; Brueckner, 1981;
Arnott et al., 1983, 1999; Glaeser et al., 2008; Glaeser and Gottlieb, 2009).
Nevertheless, the housing stock is subject to a different process of construction
and then refurbishment over the (extended) lifetime of the house. Here we do
not focus on supply side factors.

On the demand side it is now standard to see the determination of house
prices as the outcome of a market for the services of the housing stock and as an
asset. A standard model of the demand for housing services includes permanent
income, the real price of housing services and a set of other influences affecting
changes in household formation such as demographic shifts. In equilibrium the
real price of houses, ph/p, is equal to the real price of household services, s,
divided by the user cost of housing, c :

ph/p = s/c.

Here, p is a general price index. Assume that alternative assets are taxed at
the rate τ . c is then equal to the expected real after-tax rate of return on other
assets with a similar degree of risk:

c = (r + π)(1− τ)− πe,

where r is the risk-equivalent real interest rate on alternative assets and πe is
the expected rate of price inflation. Feldstein et al. (1978) assume that the
alternative asset is some aggregate capital which can be financed by the issue
of equity or the sale of bonds. The bonds are of an equivalent degree of risk
to house ownership. Equity is riskier, so there is a market determined risk
premium, ρ, on the holding of equity. In equilibrium the risk adjusted return
on equity, ε, is equal to the return on bonds:

(1− τ)ε− τcπ − ρ = (r + π)(1− τ)− πe

The return to equity is expressed as the dividend payout per unit of equity.
Another way of deriving the user cost of housing is to use the full intertem-

poral model of consumption in which in equilibrium the marginal rate of sub-
stitution between housing services and the flow of utility from consumption is:
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uh

uc
=
ph

p
{(1− τ)(r + π)− πe −∆(ph/p)e

where ∆(ph/p)e is the expected appreciation in the real price of houses.
The price of houses that satisfies the market for housing services and the

asset market arbitrage condition is:

ph/p = s/{(1− τ)(r + π)− πe −∆(p/p)e} (40)

The empirical model that can be derived from this form of analysis employs
the device of proxying the unobservable real rental price of the flow of housing
services, s, by the determinants of the demand for housing services, such as
income and the housing stock. We take the above flexible model to data on UK
house prices.

4.2 Data

We use quarterly panel data, from 1997q1 to 2016q4, across local authorities
in England. House prices at the United Kingdom Land Registry which records
all UK house transactions are available monthly at the local authority level for
England and Wales (from January 1995), Scotland (from January 2004) and
Northern Ireland (from January 2005). The average of the 3 months is used to
construct the quarterly estimates (GOV.UK, 2020).

Data on gross disposable household income are from the Office of National
Statistics Office of National Statistics (2020c). Quarterly estimates are obtained
by quadratic interpolation from annual figures. Annual population figures are
obtained from Office of National Statistics (2020a). Quarterly estimates are
obtained by quadratic interpolation from annual figures. Real house prices are
calculated by dividing by the CPI. CPI is the implicit deflator for consumer
prices calculated as the ratio of current price consumer expenditure to constant
price consumer expenditure (Office of National Statistics, 2020b).

We focus on a total of 326 English local authorities in our data set, made up
of county councils, district councils, unitary authorities, metropolitan districts
and London boroughs. We dropped the small local authority of Rutland which
has a population of only about 30,000, so the sample for housing sales is very
thin. The Isles of Scilly are included within Cornwall. The house price index
for each local authority calculated from Land Registry data is an hedonic, mix
adjusted index.

4.3 Discussion of Results

In this section we turn to a detailed discussion of the results. The steps we
perform are outlined in more detail in the Appendix 6. First step estimation
together with CCE cross-section averages produces residuals that satisfy the
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weak dependence condition based on the Pesaran (2015) CD test. We use these
residuals to compute cross-sectional correlations, which are then used to con-
duct multiple testing to estimate the weak dependence spatial weights matrix,
following the methodology in Bailey et al. (2016). This provides 238 non-zero
elements in the spatial weights matrix, which is then row normalized using row
sums of absolute values. The reported estimates in Table 1 are mean group
panel estimates of a demand equation for real house prices across 324 local au-
thorities. Estimation and inference is conducted in Stata using an extension of
the xtdcce2 command (Ditzen, 2018, 2019).

Column (1) of Table (1) is a standard panel data error correction model ac-
counting for nonstationarity and possible cointegration in the temporal dimen-
sion; see, for example, Pesaran and Smith (1995). The evidence of cointegration
is statistically significant but partial adjustment is weak and there is also sub-
stantial strong cross section dependence as evident from the CD test (Pesaran,
2015). Moreover, the long run relationship between real house prices and real
incomes, γ, is rather high at 2.881. To correct for the strong cross sectional
dependence we then used the common correlated effects mean group estimator
in column (2) (Pesaran, 2006). This now eliminates the strong cross sectional
dependence, and the exponent of cross sectional dependence, α falls to 0.565.
There is significant cointegration and strong partial adjustment to a long run
relationship between real house prices and real personal income of about 0.75.
Thus far, these two columns represent what the current literature takes as best
practice to estimating error correction models for panel data.

However, it is worthwhile examining the residuals of the model in more
detail. At the moment the model ignores any possible overlap of house prices
between local authority areas. An idiosyncratic shock to Manchester has no
consequences for the behaviour of house prices in contiguous areas so it ignores
all spatial effects, but most critically potential nonstationarity and cointegration
across the spatial dimension (Holly et al., 2011). In Figures 1a - 2b we plot on
a map of England6 various features of the significant correlation coefficients
after multiple testing (Bailey et al., 2016). Figure 1a plots the sum of the
significant correlations for each local authority area. It does appear that there
is a cluster of significant correlations around London and other large cities.7 In
Figures 1b and 2a we plot the negative and positive correlations and in Figure
2b the absolute sum of significant correlations. The plots suggest that there is
a significant degree of spatial correlation between house prices in different local
authorities that the results in columns (1) and (2) in Table 1 do not address.

We now use the results of sections 2 and 3 to integrate an explicit treat-
ment of spatial as well as temporal effects into the model. This is the major
contribution of this paper.

6Copyright for the shapefiles of England contains National Statistics data c© Crown copy-
right and database right [2015]” and ”Contains Ordnance Survey data c© Crown copyright
and database right [2015].

7 These correlations may be picking up the commuting patterns around London and other
major cities.
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Column (3) shows estimates of a spatial error correction model which is an
exact counterpart of the temporal error correction model in panel data settings
shown in column (1). Here, the spatial difference of y, ∆y, is a linear function
of ∆x – the spatial short run dynamics – together with partial adjustment to a
long run spatial equilibrium captured by the spatial weights of y and x, that is,
Wy and Wx. Remarkably, there is some indication of spatial cointegration as
well, which provides some justification for the subject of this paper. Parallel to
temporal cointegration, spatial cointegration here is interpreted as a (spatial)
long run relationship between house prices and income whereby, for the ith
local authority, if there is any disequilibrium between prices and income with
its neighbours (as given by the spatial weights matrix), house prices in the ith
local authority adjust to partially mitigate against this disequilibrium.

Here, the role of the chosen spatial weights matrix is critical, because partial
adjustment is with regard to disequilibrium amongst the neighbours of the ith
local authority. Since our cross correlation weights matrix may be in part be
capturing largely commuting patterns within local labour markets (Figures 1a
to 2b), spatial cointegration here can be interpreted as housing market forces
eliminating opportunities for local arbitrage.

In addition to spatial cointegration, and as expected, the model has strong
spatial dependence. This strong spatial dependence is not fully addressed by in-
cluding common correlated effects in Column (4). This is because nonstationary
temporal dynamics have not yet been modelled. In both models (3) and (4), the
spatial long run effect is modelled using the estimated spatial cross-correlation
weights matrix (Bailey et al., 2016). Despite some residual strong spatial de-
pendence, simultaneous evidence of spatial and temporal cointegration justifies
our spatio-temporal ECM, to which we turn next.

Column (5) reports estimates of our basic spatio-temporal ECM model from
Equation (35), which includes partial adjustment to a temporal equilibrium
and a spatial equilibrium, but no common correlated effects. As expected from
columns (1) through (4), we find strong evidence of cointegration in both dimen-
sions. However, spatial strong dependence is still present, as is evident from the
CD test (Pesaran, 2015). Also, the final two common correlated effects terms
in Equation (35) are not included, so this model is not entirely consistent with
our theory. Hence, in column (6), we also include in our model cross-section
averages of yt, xt, yt−1 and xt−1. The evidence of cointegration across both
the temporal and spatial dimensions persists. The Pesaran CD test (Pesaran,
2015) statistic is much reduced, such that the null hypothesis can be rejected
at levels just above 5%. Despite a much lowered CD test, a further reduction
of the CD test statistic would be favourable. One reason why the statistic is
not smaller may be that stationarity is not adequately achieved by taking spa-
tial differences using the cross-correlation spatial weights matrix (Bailey et al.,
2016). This line of reasoning is also supported by the evidence from columns
(3) and (4) where a pure spatial ECM does not remove in itself strong cross
section dependence. An alternative that can be considered here is the spatial
weights implied by cross section averages, as discussed in Sections 2 and 3. The
main place to apply these common correlated effects weights would be in the
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temporal partial adjustment term which relies critically on the spatial first dif-
ferences being granular (weakly dependent). Hence, in the final column (7) we
follow equation (38) and we apply common correlated effects weights only to
the temporal long run. This retains the cross correlation spatial weights in the
spatio-temporal short run dynamics and spatial error correction term.

Taking the above model to the data, in column (7), weak cross section de-
pendence can no longer be rejected at the 5% level. This is supported by
an estimated exponent of cross-sectional dependence α̂ of 0.505 with a lower
95% confidence bound of 0.497. To check on the remaining properties of the
residuals for column (7) we used the multiple testing approach again to obtain
any remaining significant cross-correlations. We find that only a single cross-
correlation remains significant. This suggests that we may have adequately
modelled strong and weak spatial dependence.

Evidence of significant short run dynamics and cointegration in the spatial
and temporal dimensions is retained. Thus, column (7) represents our preferred
model. In the temporal domain, there is about 20% partial adjustment, per
quarter, to a long run relationship between house prices and income, γ, with
a value of 1.304. The spatial long run house price elasticity of income, κ, is
1.418, and taking standard errors into consideration, this is very close to the
estimate of γ, suggesting that house prices equilibrate spatially and temporally
in a similar way. The strong partial adjustment is very notable, λ is very close
to one suggesting that house prices in the i-th local authority adjust almost
entirely to prices in other neighbourhoods, as captured by the spatial weighting
matrix.

Finally, we also explored a couple of other possible model specifications.
First, we attempted to model the spatial long run relationship using the cross
section averages based on Equation (37). However, as would be expected from
the above discussion, this model does not fit equally well, implying that the
price-income relationship at the local authority level does not adjust to the
national average. Second, we also explored a traditional and popular weights
matrix based on geographic contiguity between local authorities.This model does
not fit as well as our preferred model in column (7), with substantial spillovers
beyond first order contiguous neighbours, implying that the spatial organisation
is more nuanced. Local labour market dynamics and commuting for work may
explain spatial dynamics better than simple geography.

5 Conclusion

We develop spatial and spatio-temporal Engle-Granger representations that pro-
vide corresponding error correction models (ECMs) that are new to the litera-
ture. The spatio-temporal ECM includes partial adjustment to two equilibria,
one temporal and the other spatial, together with short run dynamics based
on a spatio-temporal difference. The above ECM highlights the distinct role of
spatial strong and weak dependence in nonstationary dynamic models. In ad-
dition, the role of strong dependence is important,and it can be modelled using
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the CCE estimator of Pesaran (2006). Weak dependence can be estimated using
the various estimators of the spatial weights matrix available in the literature,
and these estimated weights matrices can also be useful in understanding spatial
cointegration.

Applied to data on house prices and personal incomes across local authorities
in England, our model and estimation provides new evidence and interpretation
of nonstationary spatio-temporal dynamics and partial adjustment to multiple
equilibria. Importantly, there is evidence of spatial cointegration where there is
a (spatial) long run relationship between house prices and income. The partial
adjustment to this spatial equilibrium is very local, and may be explained in
part by local labour markets and commuting for work.
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6 Appendix: Estimation Steps

1. Estimate a simple model to obtain the cross-correlations

∆yi,t =βi,0 + βi,1yi,t−1 + βi,2∆xi,t + βi,3xi,t−1

+

px∑
l=0

γx,i,lx̄t−l +

py∑
l=0

γy,i,lȳt−l + εi,t

2. Obtain the cross-correlation matrix from the residuals ρi,j = 1
N

∑T
t=1 ε̂i,tε̂j,t:

W̃ =


ρ̂1,1 ρ̂1,2 . . . ρ̂1,N
ρ̂2,1 ρ̂2,2 . . . ρ̂2,N

...
. . .

...
ρ̂N,1 . . . . . . ρ̂N,N


3. Use multiple testing to obtain significant cross-correlations with ρi,j >

cp = φ−1
(

1− p/2
nδ

)
which then gives W and row standardise W .

4. Calculate spatial lags as
∑N

s=1 wi,syi,t and
∑N

s=1 wi,sxi,t.

5. Calculate ∆∆yi,t = yi,t − yi,t−1 −wiyt +wiyt−1, ∆yi,t = yi,t −wiyt and
same for ∆∆xi,t and ∆xi,t.

6. Estimate the following models:

∆∆yi,t = βi,0 + βi,1∆∆xi,t − λi (wi∆yt − ωiwi∆xt)

− φi (∆yi,t−1 − κi∆xi,t−1)

+ αiρiyt−1 + (πi − β1,i − β2,i)xt−1 + ei,t

24



respectively for large N:

∆∆yi,t = βi,0 + βi,1∆∆xi,t − λi (∆ȳt − ω̃i∆x̄t)

− φi (∆yi,t−1 − κi∆xi,t−1)

+ αiρiyt−1 + (πi − β1,i − β2,i)xt−1 + ei,t

Further cross-sectional averages can be added to both regressions.
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