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This paper proposes and estimates a new Two-Sector One-Agent model that features large 

shocks. The resulting medium-scale New Keynesian model includes the standard real and 

nominal frictions used in the empirical literature and allows for heterogeneous COVID-19 

pandemic exposure across sectors. We solve the model nonlinearly and we propose a new 

nonlinear, non-Gaussian filter designed to handle large pandemic shocks to make inference 

feasible. Monte Carlo experiments show that it correctly identifies the source and time location 

of shocks with a massively reduced running time, making the estimation of macro-models with 

disaster shocks feasible. The estimation is carried out using the Sequential Monte Carlo sampler 

recently proposed by Herbst and Schorfheide (2014). 

Our empirical results show that the pandemic-induced economic downturn can be reconciled 

with a combination of large demand and supply shocks. More precisely, starting from the second 

quarter of 2020, the model detects the occurrence of a large negative demand shock in 

consuming all kinds of goods, together with a large negative demand shock in consuming 

contact-intensive products. On the supply side, our proposed method detects a large labor 

supply shock to the general sector and a large labor productivity shock in the pandemic-
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1 Introduction

The COVID-19 pandemic outbreak that occurred in 2020 is prompting new and unex-

pected research challenges. The drastic containment policies and the social responses to

the pandemic have resulted in a sudden worldwide economic disruption, consisting in one

of the most severe global recessions since the Great Depression. The macroeconomic ef-

fects are unprecedented both in nature and in magnitude and require the development of

new economic models and methods or the adaptation of existing methods, see Lenza and

Primiceri (2020).

From a macroeconomic standpoint, the COVID-19 pandemic raises questions about its

possible classification into a supply or a demand shock, because both production and con-

sumption possibilities are impaired. Indeed, health concerns in contact-intensive economic

activities hinder the scope for either producing and consuming goods and services safely.

In addition to the first-order effects, stemming from the inability to supply or consume

products safely, cascading effects can also emerge. Among others, income and substitution

effects resulting from foregone consumption of pandemic-sensitive goods can exacerbate

economic losses, for reasons above and beyond the ones related to public health.

This paper contributes to the emerging literature on the economic effects of the pandemic

by bridging a structural macroeconomic model with the data. In this respect one key

contribution of this paper is to build and estimate a new medium-scale New Keynesian

dynamic stochastic general equilibrium (NK-DSGE) that features disaster shocks. Our

model also includes the usual features of a DSGE model to be suited for an empirical pur-

pose: nominal frictions in prices and wages, real frictions on investment, variable capital

utilization, habits in consumption and a zero-lower bound (ZLB) on the nominal interest

rate.

The model is estimated using U.S. time series, which include the COVID-19 periods and

allow us to identify the economic nature of the pandemic shocks. As the economic impact

of social distancing and containment policies has shown to be largely asymmetric across

industries, the model includes two sectors that have different degrees of exposure to the

pandemic. In the data, we identify the most affected sector as the U.S. Leisure and Hos-

pitality sector according to the BEA/BLS industry classification and the (relatively) less
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affected sector as the rest of the economy.* To capture the salient feature of pandemic

shocks, our model considers large shocks both in demand for pandemic-sensitive prod-

ucts and in demand from the unaffected sector. Moreover, we study big shocks in labor

supply and productivity in both sectors and how they jointly affect the macro-economy.

To accommodate the large movements in the time series during the COVID-19 outbreak,

we allow demand and supply shocks to be occasionally drawn from various large shock

components, accommodating an inflated variability for some of them. It is important to

emphasize that shocks can feedback on each other. As wages for work decline, there will

be potentially larger second-order negative effects on demand and the possibility of a self-

reinforcing downward spiral in production, employment, income, and demand. We solve

the model nonlinearly and, to make inference, we propose a new nonlinear, non-Gaussian

filter designed to handle and identify the large pandemic shocks. The key contribution

of our filter is to provide an endogenous estimate of both the ex-ante probability of a

large shock together with the DSGE parameters. Moreover, our proposed filter is able to

distinguish between cases in which the large shock arises either from just one component,

some combination of shocks or all of the shocks. Our results show that the economic

disruption caused by the pandemic can be explained by a combination of large shocks

both on the demand and the supply side. More precisely, starting from the second quarter

of 2020, the filter detects the occurrence of a large negative demand shock to the utility

of consuming all kinds of goods, together with a large negative demand shock which is

specific to the utility of consuming the contact-intensive products. On the supply side,

our proposed method can detect a large labor supply shock to the general sector and a

large labor productivity shock in the pandemic-sensitive sector.

Our paper relates and contributes to three strands of the literature: the theoretical analy-

sis on the economic effects of the Coronavirus pandemic; the empirical literature that fits

time-series models to pandemic related data; and the methodological research on the use

of nonlinear, non-Gaussian filter designed to handle rare disaster shocks.

On the theoretical side, the paper is firstly related to the literature on the role of sectoral

heterogeneity in the transmission of pandemic-induced shocks. Guerrieri et al. (2020) use

*In a recent contribution del Rio-Chanona et al. (2020) find that these effects vary widely between
different industries. While they do not find negative value-added effects for less affected industries such as
legal services, power generation, and distribution, or scientific research, the expected loss of value-added
reaches up to 80% for leisure and hospitality (accommodation, food services, and independent artists).
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a stylized production economy model to assess whether a supply shock (in their case a

reduction in labor supply) can trigger demand deficiencies larger than the supply shock

itself. In their paper, a key result is that these kinds of shocks, referred to as Keynesian

supply shocks, can take place in a multisectoral model, but not in a single sector set-up.

The rationale is that when one of the two sectors shuts down, a low enough substitutabil-

ity between the products of the two sectors can decrease the demand for goods in the

unaffected sector also. Such a result is facilitated when the credit market is incomplete

and when complementarities arise from both technology and preferences. The role of

complementarities in production in exacerbating or mitigating the effects of supply and

demand shocks is further explored by Baqaee and Farhi (2021) in the framework of a rich

input-output production network. Woodford (2020) shows that in a multi-sectoral model

with incomplete financial markets, the circular flow in the network of payments can be

altered as a result of supply disruptions, which are concentrated in some sectors, leading

to inefficient demand even without the assumption of complementarities in preferences

and technology. Our paper abstracts from complementarities in production and imperfect

financial markets but allows us to consider the effects of preferences and rigidities in the

transmission of shocks.

This paper is also connected to the literature that deals with the economic effects of the

pandemic by using calibrated DSGE models. Faria-e Castro (2021) models the pandemic

shock as a negative shock to the utility of services, in the context of a two-sector DSGE

with borrowing constraints, to analyze the effectiveness of various fiscal policies. In his

calibrated setting, a sequence of utility shocks is fed into the model to mimic the observed

series of U.S. unemployment and to build a counterfactual with respect to the realized

series of fiscal interventions. On the contrary, Fornaro and Wolf (2020a,b) model the pan-

demic as a negative shock to total factor productivity, which can generate long-lasting

economic losses in the framework of a New Keynesian DSGE with endogenous growth. In

the two aforementioned contributions, one kind of pandemic-related shock is allowed one

at a time. Differently from their set-up, our model allows the pandemic to result in differ-

ent types of shocks that hit together the economy and to quantitatively assess the relative

importance of them. The skeleton of our model is very similar to that of Abo-Zaid and

Xuguang (2020) who build a New Keynesian model with two sectors affected differently
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by the epidemic. The shocks associated with the pandemic are the same as ours (except

for the fact that on the production side their model does not allow the pandemic to affect

labor supply and labor productivity at the same time). In the present paper, the model

of Abo-Zaid and Xuguang (2020) is enriched by additional features to fit the data, in the

spirit of Christiano et al. (2005) and Smets and Wouters (2003): the presence of capital

and related frictions; variable capital utilization; imperfect competition and wage rigidities

in labor markets; habits in consumption; a zero-lower bound on the nominal interest rate.

Another part of the literature focuses on integrating an epidemiological model with the

economic one including, among others, Eichenbaum et al. (2020a,b), Bodenstein et al.

(2020) and Kaplan et al. (2020). We consider, instead, the pandemic shocks as exogenous

since the optimal trade-off between health and economic activity is outside the focus of

the paper.

On the empirical side, the present paper is related to the contributions involved in fitting

time series models to pandemic-related data. Brinca et al. (2020) use a Bayesian structural

vector autoregression (Bayesian SVAR) to disentangle labor supply and demand shocks

across U.S. industries during the first months of 2020. They fit a SVAR model using

data on hours worked and real wages up to February 2020 and perform a historical shock

decomposition for the following months of 2020, given the estimated parameters. They

find that COVID-19 resulted in a combination of either demand and supply shocks and

that significant heterogeneity appears in the relative importance of the two shocks across

sectors. In contrast, Lenza and Primiceri (2020) show that it is possible to estimate a

VAR without discarding the extreme movements of 2020. To do so, as in our paper, they

allow for the possibility of large shocks, consisting of a lifted standard deviation of inno-

vations. As will be discussed in Section 3, we differ from Lenza and Primiceri (2020) by

exploiting the structural nature of our DSGE model to test for the occurrence of just some

combination of large shocks, instead of necessarily all of them together.

From a methodological standpoint, this paper is connected with the filtering and estima-

tion of DSGE models. Among others, Fernández-Villaverde and Rubio-Ramı́rez (2007),

Fernández-Villaverde et al. (2011) and Flury and Shephard (2011) apply the Particle Filter

(PF) to DSGE estimation, while deterministic filters such as: Central Difference Kalman

Filter (CDKF); Unscented Kalman Filter (UKF); and Quadratic Kalman Filter (QKF)

5



have been used by Andreasen (2012, 2013), Ivashchenko (2014), Kollmann (2015), Noh

(2019) and Benigno et al. (2020).

The possibility of large disaster shocks, which call for considering higher-order and inter-

action effects between variables, requires a nonlinear solution that brings us to a nonlinear

non-Gaussian state-space model. In this case, the standard Kalman Filter (KF) cannot

be applied and nonlinear non-Gaussian filter, such as the PFs, are needed to approximate

the likelihood and filter out the latent states. Unfortunately, PFs become quickly com-

putationally unfeasible, due to the increasing number of state variables. The presence of

large shocks (economics disaster) represents an additional blow to the effectiveness of PFs.

Large shocks require an enormous number of particles to describe all the possible outcomes

that may occur after a disaster shock, see Pitt and Shephard (1999) and Amisano and

Tristani (2011).

To solve this issue in a computationally reasonable amount of time, we propose a new non-

linear, non-Gaussian filter that is based on Mixtures of Mixtures of Cubature Kalman Fil-

ter (MM-CKF). The Cubature Kalman Filter (CKF) of Arasaratnam and Haykin (2009),

is a nonlinear filter that has been used with great success in engineering application. Al-

though similar to the UKF (Wan and Van Der Merwe, 2000) it is more stable, accurate

and allows for a square-root solution that further improve its stability, see Arasaratnam

and Haykin (2009). The MM-CKF proposed in this paper runs banks of CKFs in par-

allel and tests the location and plausibility of each (possible) combination of large and

ordinary (not large) shocks. To avoid an exponential growth of the number of filtering

components, a collapsing procedure that keeps just the mixands with the largest weights

is proposed. To the best of our knowledge, the closest filter to ours is given in Binning

and Maih (2015). They use mixtures of Gaussian filters, including the CKF, in the setting

of a regime-switching DSGE model: differently from our paper, they stick to an exercise

with calibrated parameters and leave estimation outside.

Extensive Monte Carlo experiments show that the MM-CKF correctly identifies the type

and time location of shocks with a massively reduced running time, allowing the estima-

tion of DSGE models, featuring large shocks, in a reasonable amount of time. Inference

on model parameters uses the Sequential Monte Carlo (SMC) sampler, proposed by Creal

(2007) and Herbst and Schorfheide (2014, 2015). This estimation strategy has big advan-
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Figure 1: The flow chart of the two-sector one-household model.

tages in terms of parallelization, possible multimodality detection and online estimation

updating, as pointed out by Herbst and Schorfheide (2014) and Cai et al. (2021).

The remainder of the paper is organized as follows. Section 2 describes the new Two-

Sector One-Agent model that features large shocks. Section 3 discusses the large shocks

specification and the model solution. Section 4 discusses filtering problems in the presence

of disaster shocks. Section 5 presents the new filtering with Monte Carlo experiments.

Section 6 estimates the model on USA data. Finally, Section 7 concludes.

2 Model Description

In the baseline two-sector one-household model, the economy is composed of households,

one wholesale and one retail firm in each of the two sectors, unions and the central bank.

Figure 1 shows that households consume two final goods from a general sector and a pan-

demic sensitive sector (Leisure and Hospitality). They also supply labor and rent capital

to the wholesale firms in the two sectors. The wholesale firms operate the production tech-

nologies and sell the products to the retail firms, which set prices in the monopolistically

competitive final goods markets. Unions act as intermediaries between the household and

the wholesale firms and introduce contractual wage stickiness in the two sectors. Finally,

the central bank is responsible for conducting monetary policy. In the following, the gen-

eral sector will be denoted as Sector 1 (S1), while the Leisure and Hospitality sector will

be indicated as Sector 2 (S2).
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Households

A continuum of measure 1 of households chooses the sequence of consumption for the two

goods c1,t and c2,t, the sequence of hours to be worked in the two sectors n1,t and n2,t, the

amount of next period capital in the two sectors k1,t and k2,t, and the fractions of capital

to be used in production uk1,t and uk2,t so as to maximize lifetime utility:

(1)

E0

∞∑
t =0

βtaζ,t

[
1− h1

1− βh1
log (c1,t − h1c1,t−1) + aj,t

1− h2
1− βh2

log (c2,t − h2c2,t−1)

− φ1,t
n1+ν11,t

1 + ν1
− φ2,t

n1+ν22,t

1 + ν2

]
.

Above, h1 and h2 are the external habits parameters, aζ,t is the discount factor shock, aj,t is

the good 2 preference shock, which affects the relative utility of the two products, and φ1,t

and φ2,t are the labor supply shocks in the two sectors. The four shocks play a relevant role

as exogenous determinants of the pandemic-induced economic losses: large positive shocks

to φ1,t and φ2,t mirror large rises in labor disutility of working, due to health reasons; a

large negative shock to aj,t will drive down the relative utility of consuming goods from

the pandemic-affected sector; finally, a large negative shock to aζ,t represents a general

intertemporal preferences shock that impacts the desire to postpone consumption of both

goods. For these reasons, the aforementioned shocks are allowed to be large shocks, see

Section 3.

The maximization is conducted subject to the sequence of budget constraints expressed

in real terms as:

c1,t + p2,tc2,t + k1,t + p2,tk2,t + bt =

(
Rt−1bt−1
π1,t

)
+

(
w1,tn1,t
Xw1,t

)
+

(
p2,t

w2,tn2,t
Xw2,t

)
+ k1,t−1 (1− δk1 + uk1,trk1,t)

+ p2,tk2,t−1 (1− δk2 + uk2,trk2,t)−Ψk1,t − p2,tΨk2,t

+ Πu1,t + p2,tΠu2,t + Πr1,t + p2,tΠr2,t−Ψu1,t− p2,tΨu2,t.

(2)

In the budget constraint, equation (2), Πr1,t, Πr2,t, Πu1,t and Πu2,t are, respectively, profits

from retailers and profits from unions, which are all taken as a lump sum by the household

and are derived in the next subsection from the union optimization problem. The gross

inflation rate of the numeraire, P1,t/P1,t−1, is denoted by π1,t, while the relative price of

the second final good in terms of the first one, P2,t/P1,t, by p2,t. The terms Xw1,t and

Xw2,t are the wage markups that play the role of a wedge between the wage paid by
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the wholesale firms and the wage received by the household, which is collected by labor

unions, who are responsible of enforcing monopolistic competition in the labor market.

The variables Ψk1,t, Ψk2,t, Ψu1,t and Ψu2,t denote capital adjustment costs and utilization

adjustment costs, whose functional expressions are given by:

Ψk1,t =
ηk1
2

(
k1,t
k1,t−1

− 1

)2

k1,t−1, (3)

Ψk2,t =
ηk2
2

(
k2,t
k2,t−1

− 1

)2

k2,t−1, (4)

Ψu1,t =

(
1

β
− (1− δk1)

)
(

ηu1
1−ηu1

)
2

+

(
ηu1

1−ηu1

)
2

uk21,t + uk1,t

(
1− ηu1

1− ηu1

)
− 1

 , (5)

Ψu2,t =

(
1

β
− (1− δk2)

)
(

ηu2
1−ηu2

)
2

+

(
ηu2

1−ηu2

)
2

uk22,t +

(
1− ηu2

1− ηu2

)
uk2,t − 1

 . (6)

Optimization leads to the following first order conditions:

� Euler equation:

uc1,t = βRtEt
(
uc1,t+1

π1,t+1

)
. (7)

� Intratemporal consumption condition:

uc2,t
p2,t

= uc1,t. (8)

� Labor supply to S1:

aζ,tφ1,tn
ν1
1,t =

w1,tuc1,t
Xw1,t

. (9)

� Labor supply to S2:

aζ,tφ2,tn
ν2
2,t =

w2,tuc2,t
Xw2,t

. (10)

� Capital supply to S1:

uc1,t

[
1 + ηk1

(
k1,t
k1,t−1

− 1

)]
=βEtuc1,t+1

[
1− δk1 + rk1,t+1uk1,t+1 +

ηk1
2

(
k21,t+1

k21,t
− 1

)]
.

(11)
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� Capital supply to S2:

p2,tuc1,t

[
1 + ηk2

(
k2,t
k2,t−1

− 1

)]
= βEtp2,t+1uc1,t+1

[
1− δk2 + rk2,t+1uk2,t+1 +

ηk2
2

(
k22,t+1

k22,t
− 1

)]
.

(12)

� Capital utilization in S1 condition:

rk1,t
1
β − (1− δk1)

= 1− ηu,1
1− ηu,1

+
ηu,1

1− ηu,1
uk1,t. (13)

� Capital utilization in S2 condition

rk2,t
1
β − (1− δk2)

= 1− ηu,2
1− ηu,2

+

(
ηu,2

1− ηu,2

)
uk2,t. (14)

where the marginal utilities of consumption are defined by:

uc1,t =
1− h1

1− βh1

(
aζ,t

c1,t − h1c1,t−1
− Et

h1βaζ,t+1

c1,t+1 − h1c1,t

)
, (15)

uc2,t =
1− h2

1− βh2

[
aζ,taj,t

c2,t − h2c2,t−1
− Et

(
h2βaζ,t+1aj,t+1

c2,t+1 − h2c2,t

)]
. (16)

Equation (7) is the Euler equation with respect to the first good, equation (8) is the

intratemporal condition between the two goods, equations (9) and (10) are the labor

supply conditions, (11) and (12) pin down capital supply, while (13) and (14) are the

capital utilization conditions.

Firms

Similarly to Bernanke et al. (1999), we distinguish between competitive wholesale firms

that operate the production technology and charge flexible wholesale prices and retail

firms that differentiate the final goods. The wholesale firm rents capital from households

and labor from unions, taking the input prices as given in order to maximize:

max Pw1,tY1,t + Pw2,tY2,t −

∑
i=1,2

Pi,twi,tni,t +
∑
i=1,2

Pi,trki,tuki,tki,t−1

 , (17)
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subject to the production technologies:

Y1,t = (az1,tn1,t )1−α1 (uk1,tk1,t−1 )α1 , (18)

Y2,t = (az2,tn2,t )1−α2 (uk2,tk2,t−1 )α2 . (19)

By dividing Equation (17) by the numeraire P1,t, the objective function can be formulated

in real terms:

max
Y1,t
X1,t

+ p2,t
Y2,t
X2,t

−

∑
i=1,2

(
Pi,t
P1,t

)
wi,tni,t +

∑
i=1,2

(
Pi,t
P1,t

)
rki,tuki,tki,t−1

 , (20)

Above, X1,t =
P1,t

Pw1,t
is the markup between the wholesale price Pw1,t and the final goods

price P1,t and X2,t =
P2,t

Pw2,t
is the markup between the wholesale price Pw2,t and P2,t. The

variables az1,t and az2,t represent labor productivities in the two sectors. Since a pandemic

is likely to hinder the possibility of using labor to produce goods in a safe manner, we

allow also labor productivities to be subject to large shocks.

First order conditions lead to the following equations:

� Labor demand by S1:
(1− α1)Y1,t

X1,t
= w1,tn1,t. (21)

� Labor demand by S2:
(1− α2)Y2,t

X2,t
= w2,tn2,t. (22)

� Capital demand by S1:
α1Y1,t
X1,t

= rk1,tuk1,t k1,t−1. (23)

� Capital demand by S2:
α2Y2,t
X2,t

= rk2,tuk2,t k2,t−1. (24)

Equations (21) and (22) are the labor demand conditions, while (23) and (24) govern

capital demand.

Retailers buy intermediate goods Y1,t and Y2,t at prices Pw1,t and Pw2,t and differentiate them

at no cost into a continuum of varieties with constant elasticity of substitution equal to

επ1 and επ2 respectively. Households demand each variety j of good i = 1, 2 according

11



to Yi,t(j) =
(
Pi,t(j)
Pi,t

)−επi
Y d
i,t and then reaggregate them in the final consumption and

investment goods. Retailers face quadratic adjustment costs à la Rotemberg, so that price

stickiness is induced. The adjustment costs are taken with respect to a weighted geometric

average of steady-state inflation and last quarter inflation (with relative weights depending

on the indexation parameter ιπ).

The retail firm problem is therefore to set Pi,t(j) so as to maximize:

E0

∞∑
t=0

βt

{
uc1,t
uc1,0

[
Pi,t(j)

Pi,t
Yi,t(j)−

1

Xi,t
Yi,t(j)−

ηi
2

(
Pi,t(j)

Pi,t−1(j)
− πιπi,t−1

)2

Yi,t

]}
, (25)

subject to:

Yi,t(j) =

(
Pi,t(j)

Pi,t

)−επi
Yi,t. (26)

� Price Phillips curve for S1:

(27)
1− π1,tηπ1

(
π1,t − π

ιπ1
1,t−1

)
+ βηπ1Et

[
π1,t+1

uc1,t+1

uc1,t

(
π1,t+1 − π

ιπ1
1,t

) Y1,t+1

Y1,t

]
=

(
1− 1

X1,t

)
επ1 .

� Price Phillips curve for S2:

(28)
1− π2,tηπ2

(
π2,t − π

ιπ2
2,t−1

)
+ βηπ2Et

[
π2,t+1

uc1,t+1

uc1,t

(
π2,t+1 − π

ιπ2
2,t

) Y2,t+1

Y2,t

]
=

(
1− 1

X2,t

)
επ2 .

In the case of fully flexible prices (ηπ = 0), the markup is set at its steady-state value

Xi =
επi
επi−1

. Retailers’ profits are thus equal to:

Πr1,t =

(
1− 1

X1,t

)
Y1,t −

ηπ1
2

(
π1,t − πιπ1,t−1

)2
Y1,t, (29)

Πr2,t =

(
1− 1

X2,t

)
Y2,t −

ηπ2
2

(
π2,t − πιπ2,t−1

)2
Y2,t. (30)

Unions

Unions buy homogeneous labor services from households and differentiate them at no

cost. Differentiated labor varieties are then aggregated back into CES aggregates by labor

packers in homogeneous compounds, which are sold to the wholesale firm. The enforcement
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of wage rigidities by means of labor unions is in line with Smets and Wouters (2007) and

Iacoviello and Neri (2010), among others, and similarly to final goods price, it results from

the presence of adjustment costs à la Rotemberg (with indexation parameter ιw). Labor

unions face the demand schedule ni,t(h) =
(
Wi,t(h)
Wi,t

)−εwi
ni,t, i = 1, 2, from labor packers

and maximize:

E0

∞∑
t=0

βt

{
uc1,t

[
Wi,t(h)

Pi,t
ni,t(h)− ηwi

2

(
Wi,t(h)

Wi,t−1(h)
− πιwi,t−1

)2 Wi,t

Pi,t

]

−
aζ,tφi,tni,t(h)1+νi

1 + νi

}
.

(31)

Which gives the two wage Phillips curves:

� Wage Phillips curve for S1:

(32)
ηw1ω1,t

(
ω1,t − π

ιw1
1,t−1

)
= βηw1Et

uc1,t+1

uc1,t

(
ω1,t+1 − π

ιw1
1,t

) ω2
1,t+1

π1,t+1

+ (1− εw1)n1,t + εw1

(
φ1,t, n

1+ν1
1,t

w1,tuc1,t

)
.

� Wage Phillips curve for S2:

(33)
ηw2ω2,t

(
ω2,t − π

ιw2
2,t−1

)
= βηw2Et

uc1,t+1

uc1,t

(
ω2,t+1 − π

ιw2
2,t

) ω2
2,t+1

π2,t+1

+ (1− εw2)n2,t + εw2

(
φ2,tn2,t

1+ν2

p2,tw2,tuc1,t

)
.

Above, ω1,t and ω2,t are nominal wage inflation, namely ωi,t =
Wi,t

Wi,t−1
=

Pi,twi,t
Pi,t−1wi,t−1

=

πi,t
wi,t
wi,t−1

. Unions profits are therefore given by margins minus adjustment costs:

Πu1,t =

(
1− 1

Xw1,t

)
w1,t n1,t −

ηw1

2

(
ω1,t − π

ιw1
1,t−1

)2
w1,tn1,t, (34)

Πu2,t =

(
1− 1

Xw2,t

)
w2,t n2,t −

ηw2

2

(
ω2,t − π

ιw2
2,t−1

)2
w2,t n2,t. (35)

Monetary Policy

We assume that the central bank faces a ZLB constraint on the nominal interest rate rt.

This is particularly realistic in the context of the accommodating monetary policy reactions

to the COVID-19 induced shocks. In order to combine the higher-order solution with the
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occasionally binding ZLB, we assume that the central bank uses a barrier polynomial to

constrain the gross nominal interest rate above unity:

Rt = c0 + c1Runc,t + c2R
2
unc,t. (36)

The coefficients c0, c1 and c2 are obtained by fitting the polynomial to the ideal piecewise

linear function:

Rt = max {1, Runc,t} . (37)

The unconstrained interest rate Runc,t is set by the Taylor rule:

Runc,t = RrRunc,t−1R
1−rR
ss π

(1−rR)rπ
t

(
GDPt
GDPt−1

)(1−rR)rY (exp(εe,t)

as,t

)
. (38)

In the Taylor rule (38), as,t represents an autocorrelated term reflecting persistent shifts

in the monetary policy desired target, while εe,t captures momentary deviations.

The proposed approach to model the ZLB is motivated by the fact that, given that large

shocks are considered, we want to preserve nonlinearity in the model solution within the

two monetary policy regimes, instead of using a piecewise solution consisting of linear

approximations inside each of the two regimes. Even if the correspondence between equa-

tion (36) and (37) will not be perfect, the additional smoothness of equation (36) with

respect to (37) might also be regarded as a realistic feature of interest rate determination.

This strategy is connected with the strand of the literature concerned with enforcing more

complex occasionally binding constraints (as the ones on financial variables) by smooth

perturbation solutions, like in Dewachter and Wouters (2014) and Benigno et al. (2020).

Aggregation and Equilibrium

The aggregate inflation rate is given by the weighted average of the inflation rates in the

two sectors:

πt = π

(
Y1,t

Y1,t+p2,t Y2,t

)
1,t π

(
p2,tY2,t

Y1,t+p2,tY2,t

)
2,t . (39)

Aggregate production is given by:

GDPt = Y1,t + p2,tY2,t. (40)
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The evolution of the relative price of S2 is linked to the inflation rates in the two sectors:

p2,t
p2,t−1

=
π2,t
π1,t

. (41)

The model is closed with the resource constraints for the two goods, which also include

all deadweight losses due to adjustment costs:

� Resource constraint for S1:

c1,t + k1,t − (1− δk1) k1,t−1 + p2,tk2,t + p2,t (1− δk2) k2,t−1

= Y1,t

[
1− ηπ1

2

(
π1,t − π

ιπ1
1,t−1

)2]
− ηk1

2

(
k1,t
k1,t−1

− 1

)2

k1,t−1

− p2,t
ηk2
2

(
k2,t
k2,t−1

− 1

)2

k2,t−1

− ηw1

2

(
ω1,t − π

ιw1
1,t−1

)2
w1,t n1,t −Ψu1,t − p2,tΨu2,t.

(42)

� Resource constraint for S2:

(43)c2,t = Y2,t

[
1− ηπ2

2

(
π2,t− π

ιπ2
2,t−1

)2]
− ηw2

2

(
ω2,t− π

ιw2
2,t−1

)2
w2,t n2,t.

The two resource constraints (42) and (43) ensure that the amount of consumption, in-

vestment and adjustment costs are equal to production. Given that S2 is identified as the

U.S. Leisure and Hospitality industry in the data, we postulate that investment goods are

solely obtained out of S1 production.

By Walras’s law, the model can be formulated either with the two resource constraints or

with one resource constraint coupled with the household’s budget constraint (2), producing

the exactly equal results.

Exogenous Processes

The persistent exogenous processes are described by equations (44)-(50). The steady state

of the intratemporal utility shock to S2 consumption, jss, the steady state of the labor

supply shock to S1, φss1 , and the steady state of the labor supply shock to S2, φss2 are

calibrated as to match the ratios of hours worked in the two sectors and the relative price

of the two goods, precisely:

log (az1,t) = ρz1 log (az1,t−1) + εz1,t, (44)
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log (az2,t) = ρz2 log (az2,t−1) + εz2,t, (45)

log (aj,t) = (1− ρj) log(jss) + ρj log (aj,t−1) + εj,t, (46)

log (as,t) = ρs log (as,t−1) + εs,t, (47)

log (aζ,t) = ρζ log (aζ,t−1) + εζ,t, (48)

log (φ1,t) = (1− ρφ1) log(φss1 ) + ρφ1 log (φ1,t−1) + εφ1,t, (49)

log (φ2,t) = (1− ρφ2) log(φss2 ) + ρφ2 log (φ2,t−1) + εφ2,t. (50)

The standard deviations of the innovations appearing in equations (44)-(50) and the un-

correlated shock to the monetary policy target εe,t, are denoted by

σ = [σz1 , σz2 , σj , σs, σζ , σφ1 , σφ2 , σe,t]
′ . (51)

3 Large Shocks and Model Solution

The model described in Section 2 enlarged with large shocks and ZLB becomes a nonlin-

ear, non-Gaussian model. Subsection 3.1 introduces the large shock into the model, and

Subsection 3.2 discusses model solution and nonlinearity.

3.1 Non-Gaussianity

The model outlined in Section 2 represents a nonlinear system of rational expectations,

which is driven by the following vector of structural shocks:

εt = [εz1,t, εz2,t, εj,t, εζ,t, εφ1,t, εφ2,t, εs,t, εe,t]
′ . (52)

We allow the first six innovations to (possibly) display large shocks. To exclude wild move-

ments in the policy rate, which are unrelated to movements in prices and real activity, we

do not allow large shocks to the two monetary policy innovations, namely εs,t (the one

related with persistent central bank deviations from the target) and εe,t (the one related

with temporary ones).

Modelling large shocks is a challenging task, in that the rarity of the involved events pre-
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Ordinary Shock0

σ

Large Shock0

χσ

Figure 2: The modelization of large shocks. The upper panel reports the ordinary shock centered at 0 and
with a standard deviation equal to σ. The bottom panel reports the large shock with an inflated standard
deviation equal to χ · σ. The factor of increase in variability is calibrated to χ = 10.

cludes us from observing a numerous enough sample to estimate their characteristics. Our

strategy is then to be agnostic and to accommodate the possibility of very diverse scenar-

ios. In particular, we assume that the aforementioned six shocks can be drawn from (i) the

ordinary component, consisting in a zero-mean normal with ordinary standard deviation

σi (ii) the large shock component, consisting in a normal with an inflated standard devi-

ation equal to χ · σi. A graphical representation is provided in Figure 2. The large shock

parameter χ is calibrated as to provide sensible ranges for the magnitude of the shocks

responsible for the pandemic-related disruption. In particular, the calibrated factor of the

increase in variability χ guarantees that the large shock may realize in a wide interval,

and that large favorable rebounds resulting from economy re-openings are allowed. Based

on simulations (available upon request), we found it plausible that the large shocks could

live somewhere in the interval between minus thirty to thirty times the ordinary standard

deviations, which amounts to selecting χ = 10.

A second source of difficulty is the specification of the dependencies between the various

disaster components. Ideally, the filter should be able to distinguish between cases in

which the large shock arises either from just one component, some combination of them or

all of them. Defining D the set of shocks that may display rare disasters, the possible com-

ponents of the mixture are represented by the elements in the power set S = P(D). The

standardized shocks
(
ε̃t =

εt
σ

)
are then distributed according to the following mixture of

Gaussians:

p(ε̃t) =

(
1−

K∑
k=1

ψk,t

)
N (0, I) +

K∑
k=1

ψk,tN (0,Ωk), (53)

where: K is the number of components; ψk,t is the k-th probability at time t; and Ωk is a

diagonal covariance matrix where each element is one
(
χ2
)

in correspondence with shocks
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that are ordinary (large) in the k-th component.

We assume a priori, equiprobability for all the sixty-three disasters combinations, precisely,

ψk,t = ψt/63. In this paper we do not fix the time-varying disaster probabilities (ψt), but

they are estimated together with the DSGE parameters, see Section 5.

It is worth noting that our large shocks modeling is similar to Lenza and Primiceri (2020).

They show that, by allowing for an inflating factor of the variance of the VAR shocks in

the pandemic quarters, it is possible to use these last data meaningfully and to improve

on the precision of forecasts with respect to the strategy of just discarding them. In their

work, the inflating factor is estimated, while its occurrence is fixed in the months of the

pandemic. Conversely, in this paper, the entity of large shocks is calibrated (even if in

a diffuse way), while the occurrence of the disaster is estimated by the filter. Moreover,

unlike Lenza and Primiceri (2020), we do not assume that all the shocks are subject to

a magnified variability, but we leave the door open for an increase in the variance of just

some of them.

3.2 Nonlinearity

To account for higher-order effects in the transmission of large shocks and the ZLB, the

model decision rules are approximated nonlinearly. Indeed, a first-order approximation

would neglect the interaction terms in the transmission of shocks, an undesirable feature in

our large shock framework. Differently, a nonlinear approximation enables us to consider

the differentiated state-dependent responses of the economy to large shocks. Secondly, the

smooth ZLB described in Section 2 would be completely missed by a linear approximation,

as visible in Figure 3.

To estimate the model in a reasonable amount of time, a fast solution method is needed,

therefore we follow Levintal (2017) and use a second-order perturbation. The solution is

computed around the non-stochastic steady state, which is derived in Appendix 7.

The perturbation solution depends on the moments of the shocks, and we assume that the

shocks are always coming from the ordinary component. This is equivalent to postulating

that the pandemic shocks are completely unexpected by the agents of the model who do

not anticipate the possibility of large shocks and do not operate any uncertainty correction

regarding them.
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Figure 3: First and second order approximation. The figure reports a simulation of the unconstrained
and constrained interest rates using the smooth barrier polynomial, see Section 2, at the first and second
order, for a given sequence of shocks. The blue (circle) line is the unconstrained interest rate, while the red
(diamond) line is constrained rate. In the first order approximation the constrained rate would be allowed to
substantially cross the lower bound, whereas in the second order approximation it is effectively constrained.

The model solution gives:

xCt = g
(
xSt ; θ

)
,

xSt+1 = h
(
xSt ; θ

)
+R (θ) ε̃t+1,

(54)

where: sSt are the model states; sCt are the model controls; R is the matrix that links the

standardized shocks to the model states; and θ is the parameters vector. The nonlinearity

arises from g(·) and h(·) being second order polynomials in the economic states.

The model variables are linked to their observable data counterpart through the measure-

ment equations:

yt = A+Bxt + ut, ut ∼ N (0,H ), (55)

where: yt are the observed series; xt =
[
xS
′

t x
C
′

t

]′
is the stacked vector of economic states

and controls; and ut are the measurement errors.

As we will discuss in Section 6, we consider eleven series, since the number of structural

shocks is eight, adding measurement errors is necessary to avoid stochastic singularity, see

Herbst and Schorfheide (2015). We assume that H is diagonal and that it has a standard

deviation equal to 15% of the variability of the corresponding data series. We exclude the

pandemic quarters to avoid over-inflating the measurement error variance.
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4 Filtering the Nonlinear DSGE with disaster shocks

For any combination of model parameters θ, the state-space representation described

in equations (54) and (55) implicitly defines the transition and measurement densities

p (xt|xt−1; θ) and p (yt|xt; θ), from which the joint distribution of unobserved states and

observations can be constructed:

p (x1:T ,y1:T |θ) =

T∏
t=1

p (xt|xt−1; θ) p (yt|xt; θ) . (56)

By recursively integrating the unobserved states from the joint density in (56), the likeli-

hood function can be computed by prediction error decomposition:

p (y1:T |θ) =

T∏
t=1

p (yt|y1:t−1; θ) . (57)

In non-Gaussian nonlinear state-space models, the densities appearing in the equations

(56) and (57) do not have closed-form solutions and simulation methods, such as PFs,

have to be used. Since the seminal paper of Gordon et al. (1993), PFs have been used in

non-linearized DSGE models; see An and Schorfheide (2007), Fernández-Villaverde and

Rubio-Ramı́rez (2007), Fernández-Villaverde et al. (2011) and Flury and Shephard (2011).

Unfortunately, PFs suffer from the curse of dimensionality as they require an exponentially

increasing number of particles, see Bengtsson et al. (2008). For this reason, PFs entail a

high computational burden even for medium-sized models such as ours. To overcome this

issue, different solutions have been proposed. Among them, Liu and Chen (1998) propose

the Conditionally Optimal Particle Filter (COPF), whose effectiveness in the context of

DSGE estimation has been shown by Herbst and Schorfheide (2015) and Aruoba et al.

(2021). Unfortunately, except for special cases, closed-form expressions for the condition-

ally optimal density used by the COPF is difficult to derive or not available. In those cases,

a possible alternative is the Approximate Conditionally Optimal Particle Filter (ACOPF),

namely a PF that uses an approximation to the unknown optimal proposal density and is

derived in Appendix D.

The presence of large shocks (economic disasters) represents an additional blow to the

effectiveness of PFs. Large shocks require an enormous number of particles to describe

all possible outcomes which may occur after a disaster, see Pitt and Shephard (1999) and
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Amisano and Tristani (2011). The problem associated with outliers in the observations

has also been stressed by Herbst and Schorfheide (2015) who show that the data related

to the Great Recession challenge the effectiveness of PFs in estimating DSGE models. In

this respect, it is worth noticing that COVID-19 created “swings” in the time-series that

had never been seen before and that were much larger than the 2008-09 crisis.

Unlike the SMC filters, the Sigma points filters (SPF) assume a convenient parametric

form for the densities appearing in the Bayesian filtering recursion and replace the particles

of simulation-based methods with a small set of (deterministically) chosen points that are

used to compute, recursively, the moments of the densities. A textbook treatment of the

of Gaussian filters can be found in Särkkä (2013). They also have been applied to estimate

nonlinear DSGE, see among others Andreasen (2012, 2013), Ivashchenko (2014), Kollmann

(2015), Binning and Maih (2015), Noh (2019) and Benigno et al. (2020). While these filters

are approximate by construction, Andreasen (2013) and Kollmann (2015) show that they

can outperform prohibitively burdensome PFs.

5 Mixture of Mixture of Cubature Kalman Filter

To deal with the nonlinear and non-Gaussian state-space with (possibly) large shocks, we

propose a new filter that is a Mixture of Mixture of Cubature Kalman Filter (MM-CKF),

which tests all the possible disaster shocks (large deviation in state noise) realization

and easily handles nonlinearity at the same time. The filter also gives the approximated

likelihood in a fraction of the time employed by the PFs.

GSF, also known as Gaussian Mixture Filters, have been initially introduced in the signal

processing literature by Sorenson and Alspach (1971) and Alspach and Sorenson (1972).

These filters represent the posterior densities of unobserved states as mixtures of normals:

p (xt|y1:t) ≈
Gt∑
n=1

p (xt|κnt ,y1:t) p (κnt |y1:t) =

Gt∑
n=1

N
(
mn
t|t, P

n
t|t

)
wnt|t, (58)

where Gt are the number of the mixture components, κnt is an indicator variable and

wnt|t are the corresponding weights at time t. GSF share the idea that any probability

density arising from e.g. nonlinearity, can be approximated with arbitrary precision by a
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weighted sum of Gaussian densities (Alspach and Sorenson, 1972). The first two moments

mn
t|t and Pnt|t of each component are recursively estimated by banks of filters running in

parallel. Banks of Kalman filters, Extended Kalman filters, Particle filters, Unscented

Kalman filters, Cubature Kalman filters have been used by Sorenson and Alspach (1971),

Alspach and Sorenson (1972), Kotecha and Djuric (2003), Faubel et al. (2009) and Leong

et al. (2013).

In our model, the disaster shocks will over-inflate the state equation variance. To deal

with the nonlinearity and the non-Gaussianity, we split each prediction density (Gt) that

handles nonlinearity into as many components as the ones making up the noise mixture

p(ε̃t) =
∑K

k=1 ψkp
(
εkt
)

described in equation (53). Equation (58) becomes:

p (xt+1|y1:t) ≈
Gt∑
n=1

K∑
k=1

p
(
xt+1|κ(n,k)t+1 ,y1:t

)
p
(
κ
(n,k)
t+1 |y1:t

)
=

Gt∑
n=1

K∑
k=1

N
(
m

(n,k)
t+1|t, P

(n,k)
t+1|t

)
wn,kt+1|t,

(59)

where wn,kt|t stands for wnt|tψ
k
t . The splitting stage of the filter is followed by a merging one.

Indeed, given that for each of the Gt components, K new filters are created, an exponen-

tially increasing number of densities would arise. In this regard, we opt for a collapsing

strategy that constantly retains Gt components in each iteration t. Unlike Faubel et al.

(2009) and Leong et al. (2013), we use a collapsing procedure that keeps the Gt mixands

with the largest weights as suggested by Kotecha and Djuric (2003) in the context of a

GSPF. Moreover, we can fix Gt to be constant, and in the case of Gt = 1, the nonlinearity

is just handled by the CKF and the non-Gaussianity (mixture) in the state is estimated

using the K new filters created. Finally if Gt = 1 and K = 1, the filter collapses to the

well-known CKF.

A sketch of the MM-CKF is provided below (Algorithm 1), a detailed description is re-

ported in Appendix B.
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Algorithm 1 Sketch of the MM-CKF filter.

for t = 1 to T do

The filtering density of unobserved states is approximated by p (xt−1|y1:t−1) =∑Gt−1

n=1 N
(
mn
t−1|t−1, P

n
t−1|t−1

)
wnt−1|t−1.

for g = 1 to Gt−1 do

for k = 1 to K do

Use the CKF to update mean mn,k
t|t , variance Pn,kt|t and weight wn,kt|t of the

{gth, kth} mixand, assuming noise is coming from the kth component.

end for

end for

Reduce the number of mixands if Gt−1K > Ḡ or if some weight is negligible.

end for

In Algorithm 1, the last period filtered unobserved components:

p (xt−1|y1:t−1) =

Gt−1∑
n=1

N
(
mn
t−1|t−1, P

n
t−1|t−1

)
wnt−1|t−1,

make predictions on the unobserved states. For each of the Gt−1 filtered components

forming the filtered density and for each of the K components forming the state noise, the

algorithm uses the CKF formulae to compute the predicted mean µn,kt|t−1 and the covariance

Pn,kt|t−1 for the unobserved states supposing noise is coming from kth component.

The density of predicted unobserved states, for each shock combination, is then approxi-

mated by:

p
(
xt|y1:t−1, κ

n,k
t

)
= N

(
µn,kt|t−1, P

n,k
t|t−1

)
, n = 1, . . . , Gt, k = 1, . . . ,K.

The predicted unobserved states are approximated by the ensemble density:

p (xt|y1:t−1) =

Gt−1∑
n=1

K∑
k=1

N
(
µn,kt|t−1, P

n,k
t|t−1

)
wn,kt|t−1,

where the predicted weights for each component are given by wn,kt|t−1 = wnt−1|t−1ψk, for

k = 1, . . . ,K.

For each of the Gt−1K predicted components, use the CKF formulae to compute the
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predicted observations mean Yn,kt|t−1, the predicted observations covariance Fn,kt|t−1 and the

predicted variance-covariance between unobserved states and observations Pn,k,xyt|t−1 . With

these quantities, the CKF updating is performed using the new observation yt in order to

obtain the new filtered means µn,kt|t and covariances Pn,kt|t for unobserved states. Weights

are then updated using the Bayes’ rule:

wn,kt|t =
wn,kt|t−1N

(
yt;Yn,kt|t−1,F

n,k
t|t−1

)
∑Gt−1

n=1

∑K
k=1w

n,k
t|t−1N

(
yt;Yn,kt|t−1,F

n,k
t|t−1

) .
To avoid incurring an exponential proliferation of the number of components, a collaps-

ing strategy for the number of mixands is performed, as detailed in Appendix B. More

specifically, components with negligible weights are removed from the mixture and if the

number of components exceeds the maximum of Gt, than the most significant ones are

retained. Upon computing these quantities, a new iteration of the filter can be run.

Our approach to non-Gaussianity is drawn from the engineering literature where a similar

decomposition is used for nonlinear state estimation see, among others, Pei et al. (2013)

and Pei et al. (2014). Splitting rules based on Gaussian mixtures to treat large mea-

surement errors or system noise has been employed in disparate branches of the signal

processing. In our specific case, the different components of the system noise stem from

the various possible large economic shocks to be tested. The splitting rule is indeed the

direct translation, in the CKF framework, of the ones presented in Alspach and Sorenson

(1972) for KFs and Kotecha and Djuric (2003) for PFs.

Splitting the filter into the K mixture components at each time t is a computationally

costly operation to be repeated throughout the millions of likelihood evaluations required

by the SMC. To speed up the computational times, we avoid splitting the filter when it

is irrelevant. Indeed, a simple plot of the time series suggests that it is very unlikely to

observe disaster shocks (e.g. COVID-19 type shocks) before 2020. At the same time,

we do not want to completely exclude the possibility of detecting large shocks before the

pandemic quarters. The filter, by construction, does not split when the estimated ex-ante

probability of large shock ψt is too low (namely, ψt < ψ̄ = 10−3). We have to stress that

ψt is estimated endogenously together with the DSGE parameters and not fixed a priori.

As a robustness check, we use an always-splitting version of the filter on the estimated
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Figure 4: Monte Carlo results for N = 100 log-likelihood evaluation. The considered filters are the Kalman
Filter (KF), the Bootstrap Particle filter (BPF), the Auxiliary particle filter (APF), the Conditionally
Optimal Particle Filter (COPF) and the Mixture of Mixture Cubature Kalman Filter (MM-CKF). The
vertical reports the results for the deterministic KF (black vertical) and the MM-CKF (green dotted vertical
line). The BPF (blue dashed-dot), APF (red dashed) and COPF (purple dotted) have negative bias.

parameters to verify that no disaster shock is actually detected before 2020. Results are

available from the authors upon request. To show that our filter can correctly identify the

source of the shock and outperform asymptotically PFs with a massively reduced running

time (see also Andreasen, 2013 and Kollmann, 2015) we run three simulation experiments.

In the first experiment, we simulate N = 100 times the model described in Section 2 and

we apply a first order approximation, bringing to a linear and Gaussian model. In this

case the KF is the optimal filter and gives the exact likelihood. Figure 4 reports the Monte

Carlo results and shows that MM-CKF collapses to the KF while the BPF, the APF, and

the COPF have bias likelihood.

In the second experiment we simulate N = 100 times the model in Section 2, we take a

second-order approximation and finally add a random large (state) shock. The resulting

model is nonlinear and non-Gaussian and the exact expression for the likelihood is not

available. To compare the performances of MM-CKF with the other filters, we use the

RMSE of the filtered and the (true) latent state:

RMSEi,f =

√√√√ 1

N

N∑
j=1

T∑
t=1

(
x̂fi,t|t − xi,t

)2
.
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where x̂fi,t|t for i = 1, . . . , n and xi,t for i = 1, . . . , n are the filtered simulated latent states.

Table 1 reports a selection of the RMSE (full table is in Appendix E) and the computing

time (in seconds) for the KF, BPF with 40000 particles, APF with 40000 particle, COPF

with 400 and 4000 particles and the MM-CKF with Gt ≤ 4.

Table 1 shows that the MM-CKF is much faster than the BPF, APF and the ACOPF.

The KF, clearly, is the fastest filter but gives biased results. Overall, the results show that

the MM-CKF is a valuable choice in filtering unknown latent states when computational

time and robustness to large shocks are crucial. In the third Monte Carlo experiment, we

Table 1: RMSE of the Monte Carlo experiment for N = 100 replications of the Two-Sector model with
large shocks. The Table reports the full name (Full Name) with the associated symbol (Symbol). The
filters are: Kalman filter (KF); Bootstrap Particle Filter with 40000 particles (BPF); Auxiliary Particle
Filter with 40000 particles (APF); the Approximate Optimal Particle Filter with 400 and 4000 particles
(ACOPF(400), ACOPF(40000)); and the Mixture of Mixture of Cubature Kalman Filter (MM-CKF) with
four components (Gt = 4).

Full Name Symbol KF BPF APF ACOPF(400) ACOPF(4000) MM-CKF

Hours S1 n1 0.33 0.53 0.54 0.25 0.20 0.16
Hours S2 n2 0.05 0.07 0.07 0.04 0.03 0.02
Production S1 Y1 1.20 2.00 2.00 1.30 0.77 0.59
Production S2 Y2 0.23 0.34 0.33 0.23 0.15 0.14
Consumption S1 c1 0.79 1.60 1.60 0.95 0.56 0.47
Consumption S2 c2 0.23 0.34 0.33 0.23 0.15 0.14
Capital S1 k1 16.00 16.00 14.00 10.00 6.90 6.00
Capital S2 k2 2.20 2.90 2.90 2.10 1.60 1.30
Relative price p2 0.83 1.10 1.00 0.74 0.55 0.47
Inflation π 0.05 0.08 0.07 0.01 0.01 0.00

Time in Seconds

KF BPF APF ACOPF(400) ACOPF(4000) MM-CKF

0.09 650.00 1200.00 870.00 4800.00 1.20

study whether the MM-CFK provides a good identification of large shocks. We simulate

N = 500 times the model of Section 2 with the parameters obtained from our empirical

application, see Section 6. We then add negative (i.e. Realized Disaster) and then positive

(i.e. Realized Rebound) shocks of the same type and intensity found in our empirical

application. To closely match the real data, the length of the simulated series is equal to

T = 142, the realized disaster is simulated at t = 131 and the realized rebound at t = 132.

Table 2 reports the Monte Carlo results. The MM-CKF rightly detects large shocks type

and time location. More precisely considering T = 142 and N = 500 we have 71000 data

points where normal observations, realized disaster and realized rebound can occur. By
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design, we have 70000 normal observations, 500 realized disaster and 500 realized rebound,

that occur sequentially. Finally, from our model, we have K = 64 possible combinations

of large shocks. As the Table shows, the MM-CKF correctly selects the ordinary shocks

97% of the time, the location and combination of the disaster shock 90% of the time, the

location and combination of the rebound 86% of the time and, finally, the location and

combination of both 81% of the time.

Table 2 results are also analyzed in Figure 5. The figure shows the likelihood for a small

subset of the K = 64 (possible) large shocks components, by zooming around the disaster

and rebound events. The likelihood of the four components are: the ordinary component

(the one without large shocks); the component number two in the shock mixture (the one

with only a large shock to labor supply in S1); the component which, according to our

empirical application, realizes in the disaster period t = 131; and the component which,

accordingly to our empirical application, realizes in the rebound period t = 132. As the

Figure shows, the ordinary component (blue line) is the one with the largest log-likelihood

before and after the disaster periods, while in such quarters the disaster and rebound

components are correctly identified, with the highest log-likelihood of the realized disaster

(red squared line) at t = 131 and the highest log-likelihood of the realized rebound (black

circle line) at t = 132.

We conclude this experiment with Figure 6 that provides a closer look at the disaster and

rebound quarters, showing the log-likelihood of each of the possible K = 64 combinations

at time T = 131 and T = 132. The realized disaster and rebound combinations are

recognized as the ones with the highest log-likelihood among the other combinations. The

figure also reports the log-likelihood ratio for realized disaster and rebound, showing that

one combination has the highest weight, while the others have small or null weights.

6 Empirical Analysis

6.1 Data

We estimate the model on US quarterly data from 1985:Q1 to 2020:Q3. Eleven model

variables are linked to the data series: value-added in the general sector; value-added in

the Leisure and Hospitality sector; aggregate investment; aggregate consumption; hours

worked in the general sector; hours worked in the Leisure and Hospitality sector; price
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Table 2: Shock type and location Monte Carlo results for T = 142 and N = 500 replications. The
table reports: the shock type (Shock type); the number of times it is present in the simulated dataset
(Occurred); the number of times it is detected (Detected); and the results in percentage (Percentage).
The possible outcome of the experiment are: normal observations (Ordinary), realized disaster (Disaster);
realized rebound (Rebound), and realized disaster and rebound that occur sequentially (Both).

Shock type Occurred Detected Percentage

Ordinary 70000 68221 97%
Disaster 500 450 90%
Rebound 500 430 86%
Both 500 405 81%
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Figure 5: The Figure reports the log-likelihood of four components: the ordinary component (No large
shock, blue continuous line); the component number two among the K = 64 possible outcome corresponding
to a large shock to labor supply in S1 (Labor supply shock in Section 1, green diamond line); the component
corresponding to the simulated realized disaster at time t = 131 (Realized Disaster, red squared line); the
component corresponding to the simulated realized rebound at time t = 132 (Realized Rebound, black circle
line).

inflation in the general sector; price inflation in the Leisure and Hospitality sector; wage

inflation in the general sector; wage inflation in the Leisure and Hospitality sector; and

the Federal Funds Rate. Value-added, investment, consumption and hours are taken in

per capita terms and in demeaned growth rates; price and wage inflation are demeaned;

the Federal Funds Rate is in level. A detailed description regarding the sources and

the construction of the data is provided in Appendix A. The sectoral value-added and

inflation, which is retrieved from the BEA, are available at annual frequencies before 2005

and quarterly frequencies thereafter. To this end, we let these data be handled as missing

by the MM-CKF, which removes the corresponding columns for the missing quarters in

the Cubature Kalman gain matrix.
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Figure 6: Log-likelihood and likelihood ratio for each of the possible K = 64 combinations at realized disaster
(T = 131, upper plots) and realized rebound (T = 132, lower plots). The left plots report the log-likelihood
for all the K = 64 possible combinations in the realized disaster (upper left plot) and realized rebound (lower
left plot). The right upper plot reports the ratio of the highest component with respect to the remaining in
for the disaster shock. The right lower plot reports the ratio of the highest component with respect to the
remaining in for the rebound shock.

6.2 Prior Specification

Following Del Negro and Schorfheide (2008), we partition the model parameters into

three categories: parameters determining the steady state (Θ(ss)); parameters related to

the endogenous propagation mechanism (Θ(endo)); and parameters associated with the law

of motion of the exogenous variables (Θ(exo)):

Θ(ss) = [β, α1, α2, δk1 , δk2 , επ1 , επ2 , εw1 , εw2 , j
ss, φss1 , φ

ss
2 , ν1, ν2]

′ ,

Θ(endo) = [rR, rY , rπ, ιπ1 , ιπ2 , ιw1 , ιw2 , h1, h2, ηπ1 , ηπ2 , ηw1 , ηw2 , ηu1

ηu2 , ηk1 , ηk2 ]′,

Θ(exo) = [ρz1 , ρz2 , ρj , ρφ1 , ρφ2 , ρζ , ρs, σz1 , σz2 , σj , σφ1 , σφ2 , σζ , σs, σe]
′ .

(60)
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For the price and wage stickiness parameters, we specify the priors in terms of the Calvo-

related parameter θi, i ∈ {π1, π2, w1, w2}, which can be linked to ηi according to:

ηi =
θi(εi − 1)

(βθi − 1)(θi − 1)
.

We calibrate the parameters belonging to Θ(ss) basing on “gross ratios” and historical

averages. We set β = 0.991 to obtain a real annual interest rate of 3 percent at the steady-

state. The elasticity of substitution for the two final goods and for the labor varieties is

set equal to επ1 = επ2 = εw1 = εw2 = 1/0.15 + 1 in order to imply steady state markups

of 15 percent. The quarterly capital depreciation rates are set to δk1 = δk2 = 0.025, to

induce a steady-state investment to output ratio of 22 percent. Capital share parameters in

technology are fixed equal to α1 = α2 = 0.35, in order to match a labor share of income of

65 percent. The labor disutility curvature parameters ν1 and ν2, which prove to be hardly

estimated, are calibrated to 0.5, following standard macro calibration. We normalize the

hours worked in sector S1 as n1 = 1 and set the steady-state of hours worked in sector S2

as n2 = 0.07, to reflect the mean ratio of the hours worked in the two sectors observed in

the sample. We also target the mean relative price between sector S2 and the rest of the

economy by imposing p2 = 0.78 at the steady-state. The above steady-state conditions

jointly imply jss = 0.0715, φss1 = 0.643 and φss2 = 1.896. Details on the steady-state

derivations are provided in Appendix B. In addition to the steady-state parameters, as

in Iacoviello and Neri (2010), we also fix the autocorrelation of the persistent monetary

policy shock ρs = 0.975. In the present baseline estimation exercise, in order to facilitate

convergence, we assume no indexation ιπ1 = ιπ2 = ιw1 = ιw2 = 0 and we also fix the

autocorrelation of labor supply shocks in sector S2. Based on pre-sample estimates, one

parameter appeared to be weakly identified (ρφ2 = 0.84). Data also seems to be quite

silent about the sectoral differences of parameters related to consumption and investment.

This is no surprise, considering that, for consumption and investment, we only dispose of

aggregate series. We then estimate the parameters governing habits, capital adjustment

and capital utilization under the restriction of being the same in the two sectors (namely,

h1 = h2, ηk1 = ηk2 and ηu,1 = ηu,2). Overall, the number of estimated parameters is 23,

while the calibrated ones are 20.

For the sake of comparability to other studies, the priors are formed based on the ones of
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Smets and Wouters (2007). Priors are summarized in Table 3, along with posterior results.

The priors reflect estimates of moderate habits in consumption, of moderate price and wage

rigidities in sectors S1 and S2, substantial monetary policy inertia, moderate concern

for output stabilization and a strong one for the inflation level. For the autoregressive

coefficients, the priors are loosely centered around 0.50, to allow the sampler to potentially

distinguish between exogenous persistence mechanisms and endogenous ones, a point made

by Herbst and Schorfheide (2014).

6.3 Inference Strategy

The estimation is carried out using the SMC sampler that has already been used in the

DSGE literature by Creal (2007) and Herbst and Schorfheide (2014, 2015). We refer

to the above papers for a detailed description of the procedure. The SMC requires a

likelihood tempering approach, which targets a sequence of tempered posterior densities

[p (y1:T |θ)]φn p(θ), with φn ↑ 1, to add the information coming from the likelihood function

in a gradual manner, without incurring sample degeneracy and impoverishment problems.

Moreover, the SMC algorithm is “embarrassingly parallelizable” on multiple processors,

thereby drastically reducing the computational time.

In our estimation we use a tempering schedule consisting of Nφ = 250 bridge densities. The

parameter λ, determining the convexity of the tempering schedule φn =
(
n−1
Nφ−1

)
, is set to

2.1, in order to retain substantial ESS in the first stages of the algorithm. The number of

particles used is 80,000, entailing a total likelihood evaluation of 20 million. In line with

Durham and Geweke (2014), we assess convergence by running the algorithm multiple

times and comparing the estimates of parameters. The proposal, for the mutation step,

is a random walk with an adaptive covariance matrix based on the information contained

in the previous draws and with an adaptive scaling factor that targets an acceptance

probability of 25%. Estimation is carried out on an AMD Ryzen 3900X processor with 24

threads and takes around 120 hours.

6.4 Estimation Results

The posterior means and standard deviations of parameters are shown in Table 3. The

estimates suggest a high degree of habit formation. Posterior estimates indicate a higher
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degree of stickiness in prices and wages in sector S1 with respect to that in sector S2. The

Taylor rule parameters do not move substantially from the values implied by the prior.

Conversely, the likelihood proves to be influential in moving the autoregressive parameters

from their diffuse priors, generally pointing to high degrees of persistence.

By running the filter using the parameters at the posterior means shown in Table 3, it

Table 3: Estimation Results. The table reports the parameter’s name (Full Name) with the associated
symbol (Symbol). The table also reports the prior shape (Prior), prior mean and standard deviation (Mean,
St.Dev), and the posterior mean (Post. Mean) and standard deviation (Post. St.Dev) for the estimated
parameters. The B is the Beta distribution; N is the Normal distribution; G is the Gamma distribution;
IG is the Inverse-Gamma distribution; T N is the Truncated Normal distribution on the interval (0, 1).

Full Name Symbol Prior Mean,St.Dev. Post. Mean Post. St.Dev

Habits h B (0.70, 0.10) 0.81 0.02
Price rigidity S1 θ1 B (0.50, 0.10) 0.71 0.02
Price rigidity S2 θ2 B (0.50, 0.10) 0.69 0.02
Taylor rule inertia rR B (0.75, 0.10) 0.57 0.03
Taylor rule output rY N (0.12, 0.05) 0.04 0.02
Taylor rule inflation rπ N (2.00, 0.15) 1.79 0.02
Persistence Prod. S1 ρz1 B (0.50, 0.20) 0.98 0.01
Persistence Prod. S2 ρz2 B (0.50, 0.20) 0.98 0.01
Persistence Intratemp. ρj B (0.50, 0.20) 0.99 0.00
Persistence Lab. Supply S1 ρφ1

B (0.50, 0.20) 0.29 0.06
Persistence Intertemp. ρζ B (0.50, 0.20) 0.40 0.08
Wage rigidity S1 θw1

B (0.50, 0.10) 0.79 0.01
Wage rigidity S2 θw2

B (0.50, 0.10) 0.54 0.03
Uiliz. adj.cost ηu B (0.50, 0.15) 0.93 0.03
Cap. adj.cost ηk G (10.00, 2.50) 7.94 0.60
St.Dev. Prod. S1 100× σz1 IG (1.00, ∞) 0.69 0.05
St.Dev. Temp. Mon. Policy 100× σe IG (1.00, ∞) 0.25 0.02
St.Dev. Prod. S2 100× σz2 IG (1.00, ∞) 3.47 0.18
St.Dev. Intratemp. 100× σj IG (1.00, ∞) 10.25 0.83
St.Dev. Pers. Mon. Policy 100× σs IG (1.00, ∞) 3.25 0.30
St.Dev. Lab. Supply S1 100× σφ1

IG (1.00, ∞) 8.18 0.87
St.Dev. Lab. Supply S2 100× σφ2

IG (1.00, ∞) 2.77 0.42
St.Dev. Pref. 100× σζ IG (1.00, ∞) 3.12 0.33
Prepandemic Dis. Prob. 1000× ψpre T N (0.01, 0.10) 0.14 0.06
Postpandemic Dis. Prob. 100× ψpost T N (99.00, 1.00) 98.03 0.82

is possible to obtain the filtered estimates of shocks realization in the quarter 2020:Q2,

which was severely impacted by the pandemic. With this parametrization, among all the

possible combinations of large shocks as mentioned above, the filter detects the realization

of a large shock to: (i) the labor supply in sector S1 (εφ1,t); (ii) the labor supply in

sector S2 (εφ2,t); (iii) the utility of services consumption from sector S2 (εj,t); (iv) the

demand in the consumption of both goods (εζ,t), (v) the labor productivity in sector S2

(εz2,t); and (vi) the labor productivity in sector S1 (εz1,t) (at the edge between being a
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Figure 7: Filtered standardized shocks occurring in 2020:Q2. Bands represent one standard deviation
resulting from parameter uncertainty. εφ1 : labor supply shock to S1. εφ2 : labor supply shock to S2. εj:
demand shock to S2 services. εζ : demand shocks to both sectors. εz2 : labor productivity shock to S2. εz1 :
labor productivity shock to S1. εe: temporary monetary policy shock. εs: persistent monetary policy shock.

large and an ordinary shock, depending on parameter uncertainty). Figure 7 reports the

filtered standardized shocks for 2020:Q2. The Figure shows that the filtered shocks for the

first pandemic quarter display a magnified scale, resulting in innovations of one order of

magnitude above the ordinary level. Overall, the scale of the filtered large shocks is in line

with the monthly estimates of Lenza and Primiceri (2020) who find a factor of increase

in variability of pandemic shocks in the range between one or two orders of magnitude

with respect to the ordinary level. Figure 8 reports the results for 2020:Q3, showing the

partial rebound of the US economy. The filter detects a combination of large shocks given

by: (i) a large positive rebound shock to the intertemporal utility (εζ); (ii) a rebound

shock which drives down the disutility of working in sector S1 (εφ1,t); (iii) a positive large

shock to labor productivity in sector S1 (εz1,t); and (iv) a positive large shock to labor

productivity in sector S2 (εz2,t). No clear large shock is detected, neither to the relative

utility from S2 services nor to the labor supply to S2.

The path of the autoregressive processes resulting from the large shocks as described above

is displayed in Figure 9. Overall, the pandemic resulted in a large spike in the disutility of

working in both sectors φ1,t and φ2,t. While for sector S1 the labor disutility bounces back

at Q3, it remains high for the pandemic-sensitive sector, S2. As visible in the second row

of Figure 9, labor productivity in the general sector az,1 returns back from the (relatively)
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Figure 8: Filtered standardized shocks occurring in 2020:Q3. Bands represent one standard deviation
resulting from parameter uncertainty. εζ : demand shocks to both sectors. εφ1 : labor supply shock to S1.
εz2 : labor productivity shock to S2. εz1 : labor productivity shock to S1. εj: demand shock to S2 services.
εφ2 : labor supply shock to S2. εe: temporary monetary policy shock. εs: persistent monetary policy shock.

mild loss realized in Q2, while labor productivity in sector S2 does not fully recover from

the massive fall of the first quarter. Concerning the intertemporal shock aζ , it bounces

back far and beyond the prepandemic levels in Q3, while the intra-temporal utility shock

aj does not recover.

In a DSGE setting, it is not completely meaningful to classify a shock as a pure supply or

demand shock, since each effect will be transmitted across the whole economy. It is always

possible to stick to a practical definition that identifies a demand shock as one that drives

quantities and prices in the same direction, and a supply shock as the opposite. This

kind of definition leads to an immediate classification of the shocks in our DSGE model,

providing a direct translation of the sign restrictions used in the SVAR context. From this

perspective, the fact that supply shocks (e.g. labor supply and productivity) and demand

shocks (e.g. intertemporal and intratemporal preference) are spotted together is in line

with Brinca et al. (2020) who use a SVAR with sign restrictions.

To assess the impact of the identified large shocks on the observed series, a counterfactual

analysis is provided. Given the nonlinearity of the system, a historical decomposition of

the variables, in which the effects of individual shocks sum up perfectly to the observed

series, cannot be constructed. We, therefore, evaluate the shocks relative importance

by constructing an augmented state space, in which additional counterfactual variables

34



1

1985 1990 1995 2000 2005 2010 2015 2020
0

1

2

3

4

5

6

7
2

1985 1990 1995 2000 2005 2010 2015 2020
0.5

1

1.5

2

az
1

1985 1990 1995 2000 2005 2010 2015 2020
0.85

0.9

0.95

1

1.05

1.1

1.15

az
2

1985 1990 1995 2000 2005 2010 2015 2020
0.5

0.6

0.7

0.8

0.9

1

1.1

a

1985 1990 1995 2000 2005 2010 2015 2020
0.6

0.8

1

1.2

1.4

1.6

aj

1985 1990 1995 2000 2005 2010 2015 2020
0

0.5

1

1.5

Figure 9: Filtered autoregressive processes. φ1: labor disutility in S1. φ2: labor disutility in S2. az1 :
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are included. These variables track the scenarios in which some shocks are switched off,

precisely:

yt = A+Bxt + ut, xt = f (xt−1 +Rε̃t) ,

y∗t = A+Bx∗t + ut, x∗t = f (xt−1 +R∗ε̃t) .

(61)

Equation (61) reports the augmented state space, for notational convenience model state

and control variables are collapsed into the same vector xt =
[
xC
′

t xS
′

t

]′
and the composite

function f(·) combines g(·) and h(·). The matrix R∗ is constructed by equating to zero

the columns of R in correspondence of the shocks set to zero, to test what happens in the

absence of them. This is done by looking at the filtered y∗t .

Figure 10 reports the counterfactual experiment for 2020:Q2. The bars represent the pre-

dicted response of the variables corresponding to the indicated shock, with the others set

to zero. Interactions of shocks are non-negligible so that the sum of all individual contri-

butions do not equate to the observed series.

As visible, the 8% drop in the production (∆Y1) of sector S1 depends on different shocks

pointing in the same direction, with the labor productivity being the most important.

The 60%� drop in production (∆Y2) in sector S2 is mostly due to the reduction in labor

productivity (εz2), which accounts for a reduction of 48%. The relative utility shock (εj)

explains a drop in production by 16%. The decomposition of hours worked (second line

of the plot) largely reflects the one in production.

Unlike the quantities, the decomposition of prices shows a more muted effect. Indeed,

the limited response of prices compared to the large fall of quantities is a stark feature

of the COVID-19 economic disruption, which suggests the coexistence of both supply and

demand forces. As for inflation in sector S1 (π1), the negative labor supply shock to that

sector would have produced a 1.7% rate of inflation, as a counterfactual to the realized

-1%. This is due to the negative intertemporal shock that drives down prices, and it would

have produced a deflation of around -2% without the upward pressure caused by the re-

duction in labor supply. Concerning inflation in sector S2 (π2) the bar plot shows that the

negative labor supply shock (εφ2) and the negative labor productivity shock (εz2) outweigh

�The difference of logarithms becomes a crude approximation of the percentage drop in this case.
Anyway, the log difference of data variables is connected to the log difference of model variables, so the
poor approximation does not come with a wrong definition of the measurement equations.
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the negative general demand (εζ) and the sector-specific (εj) shocks. This produces the

realized positive inflation of around 1%.

Turning to the wage inflation rates, similar counteracting dynamics between demand and

supply shocks emerge. As for the wage inflation rate in sector S1 (ω1), the large labor

supply reduction, εφ1 , would have produced an increase in wages of around 6%, if the

negative general demand shock had not brought it down to the realized 2%. Similarly,

the labor supply reduction in sector S2 (εφ2) would have driven the wage inflation, ω2 to

4.6%, while the effect of the general demand shock (εζ) summed to the sector specific one

(εj) drives down the wage inflation in that sector to the realized level, -2%.

The drop in consumption is due to all the shocks moving in the same direction, with

the general demand shock being the most important contributor. Notably, the general

demand shock provides a positive contribution to investment, reducing the overall drop

(the effects of the discount factor shock on consumption and investment in the same as in

Smets and Wouters, 2003).

Finally, it is visible that supply shock, in the absence of demand shock, would have re-

quired a monetary tightening, as the price stability target by the central bank would have

outweighed the output stabilization objective in that case.

In Figure 11, the shocks are grouped and aggregated into the supply and demand cate-

gory. As in Brinca et al. (2020), the estimates of the relative effects of supply and demand

shocks suggest a combination of the two. The estimates regarding sector S2 are broadly

in line with the monthly results of Brinca et al. (2020).

7 Conclusion

This paper builds and estimates a two-sector medium-scale new Keynesian model to study

the type, magnitude and direction of economic shocks during the pandemic. The model

includes the standard real and nominal frictions used in the empirical literature and allows

for heterogeneous COVID-19 pandemic exposure across sectors.

We solve the model nonlinearly and, to make inference, we propose a new nonlinear, Non-

Gaussian filter (MM-CKF) designed to handle and identify the large pandemic shocks.

Monte Carlo experiments show that our filter can correctly identify the source and time

location of shocks and outperform Particle Filter based methods with a massively reduced
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Figure 10: Contribution of individual shocks to the observed series for 2020:Q2. Each bar corresponds
to the counterfactual in which only the reported shock is switched on. The red dotted line represents the
realized values. Individual contributions do not add up to the observed series because of nonlinearity. The
shocks are: demand shocks to both sectors (εζ); labor supply shock to S1 (εφ1); labor productivity shock
to S2 (εz2); labor productivity shock to S1 (εz1); demand shock to S2 services(εj); labor supply shock to
S2(εφ2); temporary monetary policy shock (εe) and the persistent monetary policy shock (εs).
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Figure 11: Contribution of groups of shocks to the observed series for 2020:Q2. The Demand (Supply) bars
refer to the counterfactual with supply (demand) shocks switched down. Supply shocks: {εφ1 , εφ2 , εz1 , εz2}.
Demand shocks: {εj , εζ}. The red dotted line represents the realized values. Grouped contributions do not
add up to the observed series because of nonlinearity.

running time. The reduced running time allows us to estimate the model using the Se-

quential Monte Carlo sampler recently proposed by Herbst and Schorfheide (2014).

The main empirical result of the paper is to show that the economic disruption caused by

the COVID-19 pandemic is not attributable to the realization of shocks of the supply or
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demand kind alone, but rather to a combination of those.

Treating the pandemic shocks as exogenous is undoubtedly a limitation of this exercise

with respect to the microfoundation paradigm. Nonetheless, it can still be considered as

a first step before putting a fully-fledged DSGE model with an integrated epidemiological

block to the data, which could in turn help to take a normative view about the optimal

combination of health and economic policies.

The availability of new data points related to the evolution of the pandemic will enable

the continuation of the analysis. New data will also allow testing for parameters stability

with respect to the ongoing pandemic shocks. Also, and importantly, as time goes by, it

will become possible to distinguish how much of the COVID-19 episode resulted in large

shocks to the cycle and how much to the trend. Indeed, to allow for large shocks to non-

stationary productivity variables inside the model or to reduced-form trend components

in the measurement equations, would require simple modifications to the methodology

applied in this contribution.
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Appendix A: Data Construction

Gross domestic product

Real gross domestic product (GDP) is retrieved from the U.S. Bureau of Economic Analysis

series GDPC1. The series is seasonally adjusted and is expressed as billions of chained

2012 dollars. The GDP is divided by the Civilian Noninstitutional Population (series

CNP16OV from the U.S. Bureau of Labor Statistics) to transform it in per capita terms.

Sectoral data is obtained from the GDP-by-industry accounts from the U.S. Bureau of

Economic Analysis. The shares of GDP as a percentage of total added value are reported

for the following classification of the U.S. industries, from which the GDP series for the

two sectors of the model are obtained:

� Agriculture, forestry, fishing, and hunting; Mining; Utilities; Construction; Manu-

facturing; Wholesale trade; Retail trade; Transportation and warehousing; Informa-

tion; Finance, insurance, real estate, rental, and leasing; Professional and business

services; Educational services, health care, and social assistance; Other services,

except government; Federal government; State and local government.

� Arts, entertainment, recreation, accommodation, and food services.

Data is available annually until 2005:Q1 and at quarterly frequencies afterwards. The

missing quarters are handled as missing data by the MM-CKF, setting to zero the corre-

sponding Kalman gain entries. The data spans from 1985:Q1 to 2020:Q3.

Inflation

Sectoral data on prices are collected by the U.S. Bureau of Economic Analysis in the GDP-

by-industry accounts. For each sector, chain-type price indexes are collected, with 2012

being the reference year. As for value-added by sectors, quarterly data is only available

starting from 2005:Q1. Only one out of four quarterly inflation rates are therefore assumed

to be observed for each year before 2005 and it is assumed to be equal to the yearly rate

divided by four. The other observations are treated as missing. The data spans from

1985:Q1 to 2020:Q3.
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Consumption

Aggregate real consumption in billions of chained 2012 dollars is provided by the U.S.

Bureau of Economic Analysis in the PCECC96 series. The series is seasonally adjusted

and it spans from 1985:Q1 to 2020:Q3. The series is divided by the Population Level

(CNP16OV) to get per capita consumption.

Investment

Real Gross Private Domestic Investment is retrieved from the U.S. Bureau of Economic

Analysis series GPDIC1. It is seasonally adjusted and measured in billions of chained 2012

dollars and it spans from 1985:Q1 to 2020:Q3. The series is divided by the Population

Level (CNP16OV) to get per capita investment.

Hours worked

Data on hours worked across industries is obtained from the U.S. Bureau of Labor Statis-

tics’s Current Employment Statistics (Establishment Survey). In Table B-7, the average

weekly hours and overtime of production and nonsupervisory employees on private non-

farm payrolls is collected, while the number of employees on nonfarm payrolls for each

industry is found in Table B-1. The original monthly series are filtered to the quarterly

frequency by applying the arithmetic mean. All series are seasonally adjusted. The per

capita weekly hours worked in each sector are obtained by multiplying the average hours

by employment and dividing them by the Population Level (CNP16OV). The data spans

from 1985:Q1 to 2020:Q3.

Wages

Data on sectoral nominal wages is retrieved from the Current Employment Statistics

(Establishment Survey) provided by U.S. Bureau of Labor Statistics. Average hourly

earnings of production and nonsupervisory employees for the various industries are found

in Table B-8. Monthly seasonally adjusted data is averaged to obtain quarterly figures.

Nominal wages for aggregate subsets of sectors is obtained as a weighted average of wages

with respect to hours worked in that sectors. We differentiate logged data to get nominal

wage inflation. The data spans from 1985:Q1 to 2020:Q3.
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Interest rate

The nominal short-term interest rate is measured as the 3-Month Treasury Bill yield in

the secondary market. The daily measurements are averaged and divided by four to get

the quarterly interest rate. The data spans from 1985:Q1 to 2020:Q3.

Appendix B: Steady State

Here we derive the steady state of the model.

X1 =
επ1

επ1 − 1
, X2 =

επ2
επ2 − 1

, Xw1 =
εw1

εw1 − 1
,

Xw2 =
εw2

εw2 − 1
, uk1 = 1, uk2 = 1, π1 = 1,

π2 = 1, Ψk1 = 0, Ψk2 = 0, Ψu1 = 0, Ψu2 = 0.

The parameter Rss, appearing in the Taylor rule and pinning down the steady state for

the unconstrained interest rate Runc, is calibrated to be the root of the barrier polynomial

R = c0 + c1Runc + c2R
2
unc (the economically admissible one of the two), so that:

Runc = Rss

and

R =
1

β
.

The auxiliary variables ζ0, ζ1, ζ2 and ζ3 are defined for the sake of convenience. The

variables ζ0 and ζ1 are respectively equal to k1
Y1

and k2
Y2

, while ζ2 and ζ3 stand for c1
Y1

and

c2
Y2

, respectively. It holds that:

ζ0 =
α1β

X1(1− β(1− δk1))
, ζ1 =

α2β

X2(1− β(1− δk2))
, ζ3 = 1,

n2 =

(
1− α2

X2Xw2

1

ζ3

jss

φss2

) 1
1+ν2

, Y2 = n2ζ
α2

1−α2
1 , k2 = ζ1Y2, c2 = ζ3Y2.
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The ratio between c1 and p2 can be easily found as:

c1/p2 =
c2
jss

.

Then, by the market clearing for Sector 1,

Y1/p2 =
c1/p2 + δk2k2

1− δk1ζ0
,

so that

ζ2 =
c1/p2
Y1/p2

, n1 =

(
1− α1

X1Xw1

1

ζ2

1

φss1

) 1
1+ν1

, Y1 = n1ζ
α1

1−α1
0 , k1 = ζ0Y1,

c1 = ζ2Y1, uc1 =
1

c1
, uc2 =

jss

c2
, w1 = φss1 n

ν1
1

Xw1

uc1
,

w2 = φss2 n
ν2
2

Xw2

uc2
, p2 =

uc2
uc1

, Πr1 =

(
1− 1

X1

)
Y1, Πr2 =

(
1− 1

X2

)
Y2,

Πu1 =

(
1− 1

Xw1

)
w1n1, Πu2 =

(
1− 1

Xw2

)
w2n2, π = π1

(
Y1

Y1+p2Y2

)
π2

(
p2Y2

Y1+p2Y2

)
= 1,

az1 = 1, az2 = 1, aj = jss, as = 1, φ1 = φss1 , φ2 = φss2 .

Appendix C: Derivation of the Mixture of Mixture Cubature

Kalman Filter

This Appendix describes in detail the derivation of the Mixture of Mixture of Cubature

Kalman Filter (MM-CKF). The MM-CKF is based on the Cubature Kalman Filter (CKF)

of Arasaratnam and Haykin (2009). The CKF falls into the category of Gauss-Hermite

transformation filters, where the moments’ propagation and updating are based on numer-

ical integration rules. Differently from the Gauss–Hermite Kalman filter (GHKF) of Ito
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and Xiong (2000) and the Quadrature Kalman filter (QKF) of Arasaratnam et al. (2007),

the number of sigma points scales linearly in the integration dimensions, by the use of

symmetric spherical-radial cubature rule. This provides a tool against the curse of dimen-

sionality. The spherical radial cubature rule in Arasaratnam and Haykin (2009) is exact up

to order three, meaning that the first moments will be propagated exactly for state-space

functions consisting in polynomials up to order three (or well approximated by polynomi-

als up to order three). As pointed out by Särkkä (2013), indeed, the integrations involving

second moments will be exact just for state-space functions consisting of polynomials up

to order one. It is possible to specify high order Cubature Kalman filters (Jia et al., 2013),

but the number of cubature points would scale polynomially in the state dimension. More-

over, some weights may turn negative, possibly giving rise to numerical instability. The

algorithm of the CKF is the following: Assuming p(xS0 |y1:0) = N (m0|0, P0|0) the initial

distribution of the states, for t = 1 to T perform the following steps:

1) Prediction

(a) From time t−1 posterior density function p(xSt−1|y1:t−1) = N (mt−1|t−1, Pt−1|t−1)

form the augmented filtered cubature points:

X S(i)

t−1|t−1

E(i)t−1|t−1

 =

mt−1|t−1

E(εt)

+

√√√√√√
Pt−1|t−1 0

0 V(εt)

ξ(i)
i = 1, . . . , 2(nSx + nε)

where the cubature points (ξ(i)) are derived from the spherical-radial rule

(Arasaratnam and Haykin, 2009)

ξ(i) =


√
nSx + nεei, i = 1, . . . , nSx + nε,

−
√
nSx + nεei−nSx−nε , i = nSx + nε + 1, . . . , 2(nSx + nε),

and where the ei’s are the vectors forming the standard basis of R(nSx+nε).

(b) Propagate states cubature points using the second equation in (54):

X S(i)

t|t−1 = h(X S(i)

t−1|t−1) +RE(i)t−1|t−1, i = 1, . . . , 2(nSx + nε)
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(c) Obtain predicted controls cubature points using the first equation in (54):

XC(i)

t|t−1 = g
(
X S(i)

t|t−1

)
, i = 1, . . . , 2

(
nSx + nε

)
(d) Compute predicted means and covariances for states and controls

µ∗t|t−1 ≡

 mS
t|t−1

mC
t|t−1

 =
1

2(nSx + nε)

2(nSx+nε)∑
i=1

 X S(i)

t|t−1

XC(i)

t|t−1



P ∗t|t−1 =
1

2 (nSx + nε)

2(nSx+nε)∑
i=1


 X S(i)

t|t−1

XC(i)

t|t−1

−
 mS

t|t−1

mC
t|t−1




 X S(i)

t|t−1

XC(i)

t|t−1

−
 mS

t|t−1

mC
t|t−1




′

2) Updating

(a) Form the predicted states and controls cubature points:

X ∗(i)t|t−1 = µ∗t|t−1 +
√
P ∗t|t−1ζ

(i), i = 1, . . . , 2(nSx + nCx )

(b) Obtain predicted observations cubature points through the measurement equa-

tion (55):

Y(i)
t|t−1 = A+BX ∗(i)t|t−1, i = 1, . . . , 2

(
nSx + nCx

)
.

(c) Compute predicted observables mean, covariance and cross-covariance between

the states and observables:

Ȳt|t−1 =
1

2 (nSx + nCx )

2(nSx+nCx )∑
i=1

Y(i)
t|t−1

Ft|t−1 =
1

2 (nSx + nCx )

2(nSx+nCx )∑
i=1

(
Y(i)
t|t−1 − Ȳt|t−1

)(
Y(i)
t|t−1 − Ȳt|t−1

)′
+ V(ut)

Pxyt|t−1 =
1

2(nSx + nCx )

2(nSx+nCx )∑
i=1

(
X ∗(i)t|t−1 − µ

∗
t|t−1

)(
Y(i)
t|t−1 − Ȳt|t−1

)′
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(d) Compute Kalman gain to obtain the new filtered mean and covariance for states

and controls:

Kt = Pxyt|t−1
(
Ft|t−1

)−1
µ∗t|t = µ∗t|t−1 +Kt(yt − Ȳt|t−1)

P ∗t|t = P ∗t|t−1 − P
xy
t|t−1

(
Ft|t−1

)−1 (Pxyt|t−1)′
From µ∗t|t and P ∗t|t the nSx states entries are retained to have mt|t and Pt|t to be

used in the following iteration.

The MM-CKF described in Section 5 is based on a mixture of mixture of CKF. This mix-

ture is on the structural errors allowing to disentangle the structural shock that experience

the large negative (positive) impulse. The MM-CKF is the following:

Assume p
(
xS0 |y1:0

)
= N

(
m0|0, P0|0

)
as the initial distribution of the states, and G0 = 1.

For t = 1, . . . , T and for each filtered component n = 1, . . . , Gt−1 in

p (xt−1|y1:t−1) =

Gt−1∑
n=1

p
(
xt−1|κnt−1,y1:t−1

)
p (κnt |y1:t) =

Gt−1∑
n=1

N
(
mn
t−1|t−1, P

n
t−1|t−1

)
wnt−1|t−1.

perform the following steps:

1) Prediction

(a) Split each filter n in K densities with predicted weights w̃n,kt|t−1 = wnt−1|t−1ψk,

k = 1, . . . ,K, assuming noise from component εkt .

(b) For each shock component k = 1, . . . ,K form the augmented filtered cubature

points:

X n,k,S(i)

t−1|t−1

En,k,(i)t−1|t−1

 =

mn
t−1|t−1

E(εkt )

+

√√√√√√
Pnt−1|t−1 0

0 V(εkt )

ξ(i)
i = 1, . . . , 2(nSx + nε).

(c) Propagate states cubature points using equation (54):

X n,k,S
(i)

t|t−1 = h
(
X n,k,S

(i)

t−1|t−1

)
+REn,k,(i)t−1|t−1, i = 1, . . . , 2(nSx + nε).
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(d) Obtain predicted controls cubature points using equation (54):

X n,k,C
(i)

t|t−1 = g
(
X n,k,S

(i)

t|t−1

)
, i = 1, . . . , 2(nSx + nε).

(e) Compute predicted means and covariances for states and controls:

µ∗,n,kt|t−1 ≡

 mn,k,S
t|t−1

mn,k,C
t|t−1

 =
1

2 (nSx + nε)

2(nSx+nε)∑
i=1

 X n,k,S(i)

t|t−1

X n,k,C
(i)

t|t−1

 ,

P ∗,n,kt|t−1 =
1

2 (nSx + nε)

2(nSx+nε)∑
i=1


 X n,k,S(i)

t|t−1

X n,k,C
(i)

t|t−1

−
 mn,k,S

t|t−1

mn,k,C
t|t−1




 X S(i)

t|t−1

XC(i)

t|t−1

−
 mn,k,S

t|t−1

mn,k,C
t|t−1




′

.

2) Updating

(a) For each component {n, k} form the predicted states and controls cubature

points:

X ∗,n,k,(i)t|t−1 = µ∗,n,kt|t−1 +
√
P ∗,n,kt|t−1ζ

(i), i = 1, . . . , 2(nSx + nCx ).

(b) Obtain predicted observables cubature points through the measurement equa-

tion (55):

Yn,k,(i)t|t−1 = A+BX ∗,n,k,(i)t|t−1 , i = 1, . . . , 2(nSx + nCx ).

(c) Compute predicted observables mean, covariance and cross-covariance between

states and observables:

Ȳn,kt|t−1 =
1

2(nSx + nCx )

2(nSx+n
C
x )∑

i=1

Yn,k,(i)t|t−1 ,

Fn,kt|t−1 =
1

2 (nSx + nCx )

2(nSx+nCx )∑
i=1

(
Yn,k,(i)t|t−1 − Ȳ

n,k
t|t−1

)(
Yn,k,(i)t|t−1 − Ȳ

n,k
t|t−1

)′
+ V(ut),

Pn,k,xyt|t−1 =
1

2 (nSx + nCx )

2(nSx+n
C
x )∑

i=1

(
X ∗,n,k,(i)t|t−1 − µ∗,n,kt|t−1

)(
Y(i)
t|t−1 − Ȳ

n,k
t|t−1

)′
.
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(d) Compute Kalman gain to obtain new filtered mean and covariance for states

and controls:

Kn,kt = Pn,k,xyt|t−1

(
Fn,kt|t−1

)−1
,

µ∗,n,kt|t = µ∗,n,kt|t−1 +Kn,kt
(
yt − Ȳn,kt|t−1

)
,

P ∗,n,kt|t = P ∗,n,kt|t−1 − P
n,k,xy
t|t−1

(
Fn,kt|t−1

)−1 (
Pn,k,xyt|t−1

)′
.

From µ∗,n,kt|t and Pn,k,∗t|t the nSx states entries are retained to have mn,k
t|t and Pn,kt|t .

3) Weights updating

(a) Weights are updated using Bayes’ rule:

w̃n,kt|t =
w̃n,kt|t−1N

(
yt; Ȳn,kt|t−1,F

n,k
t|t−1

)
∑Gt−1

n=1

∑K
k=1 w̃

n,k
t|t−1N

(
yt; Ȳn,kt|t−1,F

n,k
t|t−1

) .
4) Collapsing (only if Gt−1K > G)

(a) Components weights w̃n,kt|t are sorted in descending order.

(b) The first G components and their respective means and covariances mn,k
t|t and

Pn,kt|t are retained and their indices {n, k} are relabeled with 1, . . . , G.

(c) If the smallest retained weight w̃Gt|t < w̃threshold resampling is conducted from

the G retained mixands using probabilities proportional to w̃nt|t, n = 1, . . . , G.

Weights are then set to 1
G .

(d) Next period filtering weights are finally obtained by normalization:

wnt|t =
w̃nt|t∑G
n=1 w̃

n
t|t
.

The likelihood function is then approximated by:

p (y1:T |θ) =

T∏
t=1

p (yt|y1:t−1; θ) ≈
T∏
t=1

N
(
yt; Ȳt|t−1,Ft|t−1

)
, (62)
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where Ȳt|t−1 =
∑K

k=1

∑Gt−1

n=1 w̃n,kt|t−1Ȳ
n,k
t|t−1 and:

Ft|t−1 =
K∑
k=1

Gt−1∑
n=1

w̃n,kt|t−1

[
Fn,kt|t−1 +

(
Ȳn,kt|t−1 − Ȳt|t−1

)(
Ȳn,kt|t−1 − Ȳt|t−1

)′]
.

Appendix D: The Approximate Conditional Optimal Particle

Filter

The Conditionally Optimal Particle Filter (COPF), see Herbst and Schorfheide (2015) and

Aruoba et al. (2021), requires an exact expression for conditionally-optimal proposal den-

sity. This can be easily derived just in few special cases including: linear state transitions

and piecewise-linear state transitions. Specifically, Aruoba et al. (2021) show that when

the DSGE solution produces piecewise-linear state transition equations, the conditionally

optimal density takes the form of truncated normal mixtures.

In our model solution, the state transition is a second order polynomial in the states and,

unfortunately, an exact expression for the conditionally optimal density is not available and

the COPF cannot be applied. As an approximation, we propose the Approximate Condi-

tionally Optimal Particle Filter (ACOPF) which the conditionally-approximate density is

derived with a CKF step. More specifically:

p(xt|xjt−1,yt) ≈ p̃(xt|x
j
t−1,yt) = N

(
xj,CKFt|t , P j,CKFt|t

)
,

where xj,CKFt|t and P j,CKFt|t represent respectively the filtered means and covariances, of

the unobserved states, obtained from a run of the CKF on the latest observation yt, this

filter is also known as Cubature Particle Filter (CPF).

In the context of DSGE models, the optimal importance density approximation using

Gaussian filters have been proposed, among others, by Amisano and Tristani (2010) (Ex-

tended Kalman Filter) and by Andreasen (2011) (Central Difference Kalman filter). By

using an importance density proposal gt(xt|xjt−1,yt) 6= p(xt|xjt−1), the importance weight

wjt =
p(yt|xjt )p(x

j
t |x

j
t−1)

gt(x
j
t |x

j
t−1,yt)

,
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must be evaluated. In our case, as in Andreasen (2011), the density p(xjt |x
j
t−1) is degener-

ate, given that the shocks enter contemporaneously for just some state variables, i.e. the

loading matrix R displays null lines and RV(εt)R
′ is singular. To circumvent this problem,

exactly as in Andreasen (2011), the proposal is split is two parts. The first one propagates

the states corresponding to the singular lines deterministically through the transition func-

tions. The second part updates the states corresponding to the non singular lines by a run

of the CKF. The importance weight for each particle is then calculated only evaluating

the non-degenerate part of the density corresponding to the non-degenerate states.
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Appendix E: Further results

Table 4: Full table. RMSE of the Monte Carlo experiment for N = 100 replications of the Two-Sector model
with large shocks. The Table reports the full name (Full Name) with the associated symbol (Symbol). The
filters are: Kalman filter (KF); Bootstrap Particle Filter with 40000 particles (BPF); Auxiliary Particle
Filter with 40000 particles (APF); the Approximate Optimal Particle Filter with 400 and 4000 particles
(ACOPF(400), ACOPF(40000)); and the Mixture of Mixture of Cubature Kalman Filter (MM-CKF) with
four components (Gt = 4).

Full Name Symbol KF BPF APF ACOPF(400) ACOPF(4000) MM-CKF

Wage S1 w1 0.31 0.69 0.49 0.36 0.28 0.28
Int. rate rnot 0.03 0.16 0.05 0.04 0.01 0.01
Lab. Supply S1 at1 0.54 1.30 0.64 0.52 0.37 0.37
Wage S2 w2 1.10 2.50 1.80 1.20 1.10 1.10
Lab. supply S2 at2 1.80 2.60 2.40 1.80 0.99 0.95
Prod. S1 az1 0.19 0.52 0.32 0.22 0.17 0.17
Prod. S2 az2 0.60 1.40 1.00 0.64 0.59 0.59
Intertemp. shock aζ 0.26 0.89 0.40 0.24 0.23 0.23
Intratemp. shock aj 0.46 0.94 0.75 0.49 0.38 0.38
MP shock εe 0.02 0.03 0.03 0.03 0.01 0.01
Investment invest 0.20 0.72 0.33 0.21 0.16 0.16
Total output GDP 0.77 2.10 1.30 0.81 0.64 0.64
Hours S1 n1 0.18 0.54 0.25 0.20 0.16 0.16
Markup S1 X1 0.04 0.20 0.06 0.05 0.03 0.03
Hours S2 n2 0.03 0.07 0.04 0.03 0.02 0.02
Marg. ut. S2 uc2 0.20 0.44 0.30 0.22 0.19 0.19
Markup S2 X2 0.04 0.20 0.05 0.04 0.02 0.02
Inflation π 0.01 0.07 0.01 0.01 0.00 0.00
Profits retailers Πr 0.21 0.83 0.35 0.25 0.15 0.15
Cap. adj. Cost Ψk 0.01 0.05 0.01 0.01 0.00 0.00
Wage markup S1 Xw1

0.18 0.48 0.26 0.22 0.15 0.15
Wage markup S2 Xw2

1.60 2.20 1.90 1.70 0.94 0.93
Profits unions Πu 0.64 1.80 0.73 0.67 0.25 0.25
Int. rate R 0.02 0.06 0.02 0.02 0.00 0.00
Notional int. rate Rnot 0.03 0.16 0.05 0.05 0.01 0.01
Production S1 Y1 0.71 2.00 1.30 0.77 0.59 0.59
Production S2 Y2 0.15 0.33 0.23 0.15 0.14 0.14
Marg. ut. S1 uc1 0.06 0.24 0.06 0.04 0.04 0.04
Rental rate S1 rk1 0.00 0.01 0.00 0.00 0.00 0.00
Utilization S1 uk1 0.11 0.35 0.14 0.11 0.09 0.09
Rental rate S2 rk2 0.01 0.02 0.01 0.01 0.01 0.01
Utilization S2 uk2 0.25 0.64 0.40 0.29 0.23 0.23
Wage infl. S1 ω1 0.01 0.08 0.02 0.02 0.01 0.01
Wage infl. S2 ω2 0.01 0.05 0.01 0.01 0.00 0.00
Uiliz. adj.cost S1 Ψu1

0.00 0.01 0.00 0.00 0.00 0.00
Uiliz. adj.cost S2 Ψu2 0.01 0.02 0.01 0.01 0.01 0.01
Consumption S1 c1 0.52 1.60 0.95 0.56 0.47 0.47
Inflation S1 π1 0.01 0.07 0.02 0.01 0.00 0.00
Consumption S2 c2 0.15 0.33 0.23 0.15 0.14 0.14
Inflation S2 π2 0.01 0.06 0.01 0.01 0.00 0.00
Capital S1 k1 6.70 14.00 10.00 6.90 6.00 6.00
Capital S2 k2 1.30 2.90 2.10 1.60 1.30 1.30
Relative price p2 0.48 1.00 0.74 0.55 0.47 0.47
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