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Abstract

A range of monthly series are currently available giving indications of short-term movements in output
in the United Kingdom. As the only available information, these indicators are routinely exploited in
various ways although they only provide an incomplete picture of gross domestic product (GDP). The
main aim of this paper is to suggest a formal and coherent procedure for grossing these monthly data
up to represent the whole of GDP. Although the resultant estimates of GDP would be worse than those
obtained by direct measurement, they should be more satisfactory than simply making an informal
inference from whatever monthly data are available. Our examination of the efficacy of the method for
estimation of the state of economic activity indicates a rather satisfactory outcome.
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grant L116251012. Richard Smith also gratefully acknowledges partial financial support for this and an earlier revision from
the ESRC under the project R000237334 “Automatic Leading Indicators” and a 2002 Leverhulme Major Research Fellowship.
Any errors remain our own.



1 The Motivation for Monthly Estimates of GDP

Macro-economic policy-making in real time faces the perennial problem of uncovering what is actually

happening to the economy. Movements of seasonally adjusted real GDP (referred to subsequently simply

as GDP) and related estimates of the output gap are widely regarded as important predictors of future

inflation and thus are relevant to the problem of inflation targeting. Estimates of GDP are typically

produced quarterly with the first estimates in the United Kingdom available about twenty five days after

the end of the quarter to which they relate.1 In many countries including the UK monetary policy is

set more frequently than quarterly and in order to do so policy makers need not only to anticipate first

estimates of GDP growth but also to estimate what is happening within each quarter. A range of monthly

series are currently available giving indications of short-term movements in output. As the only available

information, they are already exploited in various ways: financial commentators routinely examine monthly

data on retail sales, the trade figures, and the output of the production industries in order to assess the

state of the economy and likely developments in monetary policy; academic researchers exploiting high

frequency econometric techniques make use of one or other of these series as the best available proxy for

a broader measure of demand or output.

If these monthly data are to be used to draw inferences about the state of the economy as a whole, then

it is desirable that there should be some formal procedure for grossing them up to represent the whole of

GDP. Such a procedure is likely to produce estimates of GDP which are worse than those which might be

produced by direct measurement. On the other hand, it would certainly be more satisfactory than simply

making an informal inference from whatever happen to be the latest numbers available.

The Office for National Statistics (ONS) in the United Kingdom used to publish lagging, co-incident

and leading cyclical indicators for the UK. These indicators were constructed (O’Dea 1975) using a variant

of the methods developed by the United States’ Bureau of Economic Analysis and now maintained there

by the US Conference Board. In their earlier stages it was unclear what represented the ‘business cycle’

but by the end of their life the indicators were intended to represent cyclical movements in real GDPand

the co-incident indicator was constructed by interpolating quarterly GDP. The interpolation method used

industrial production and retail sales as indicators but in a manner which was uninformed by statistical

theory. The indicator system was abandoned mainly because the forecasting power of the leading indicator

was negligible. However, a logical step was to see whether the co-incident indicator could be developed

into an indicator of monthly seasonally adjusted GDP in constant prices estimated using clearly specified

statistical methods.

1Longer lags are typical elsewhere although EUROSTAT is aiming for a reduction to forty-five days for members of the
European Union.
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Other researchers have approached the problem of constructing a co-incident indicator from a different

perspective. Stock & Watson (1989) produced a co-incident indicator of economic activity in the United

States. Their indicator was an estimated latent variable derived from a dynamic factor model based on a

number of variables believed to coincide with the business cycle in the United States. The authors argued

that it was valuable to distinguish indicators of the business cycle from monthly movements in GDP,

because GDP can be affected by variables such as weather conditions and other acts of God unrelated

to the state of the cycle. Two strands of research have emerged from this. One (Stock & Watson 2002)

builds on Stone (1947) using static principal components to summarise a wide range of data, and defines

the cycle as the first principal component. The second (Forni, Hallin, Lippi & Reichlin 2001) develops

a dynamic factor model from spectral analysis, again aiming to represent the state of the economy by a

latent variable.

Despite the desirability of purging the distortionary effects of non-economic events from data, the use

of a latent variable as a key indicator of the state of the economy is open to two fundamental objections.

First of all, there are bound to be difficulties in communicating its meaning to data users and policy

makers; they will inevitably want to relate it to GDP. Secondly, there is no obvious means of verifying the

performance of the models used to generate it.

In this paper, therefore, we focus on the construction of a monthly indicator of GDP2 and the way it can

be combined with short-term forecasting methods to produce an estimate of quarterly GDP growth about

three weeks ahead of the first official data. The indicator has been published monthly by the National

Institute of Economic and Social Research since April 1998. The early estimates of quarterly GDP growth

produced are compared here with the first official estimates, allowing us to provide a real-time assessment

of the approach.

2 Data Availability

Output indicators are generally regarded as being better guides than expenditure indicators to short-term

movements in GDP (Office for National Statistics 2004, Background Note 2). The first estimate of GDP

produced by the Office for National Statistics (ONS) is based on output rather than expenditure data

(National Accounts, Concepts, Sources and Methods 1998, p. 212). It is therefore natural to attempt to

build an estimate of monthly GDP from the output side. The components of the output measure of real

GDP fall into three broad categories: series for which data are already available; series for which there are

2If desired, smoothing methods might also be used to produce estimates of “underlying” GDP from the monthly indicator.
Their performance would presumably need to be assessed in the light of the capacity of underlying GDP to predict future
GDP. Such underlying measures ought to provide reasonable forecasts because they should remove short-run I(0) noise but
not the long-run I(1) signal in GDP.
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Component Code Availability of % of GDP
data/indicators (1995) (2002)

Production CKYM 100 % data available 26.6 21.4
Index of Production

Agriculture GDQA No indicators 1.8 1.0
Construction GDQB Input and Output Indicators available 5.2 6.3

available only with Delay
Qualitative DG-ECFIN Survey since 1985

Private Services GDQE, GDQH, Qualitative DG-ECFIN Survey since 1997 43.9 52.8
GDQN Index of Retail Sales

Indices of Production Activity
Monthly Trade Data

Public Services GDQU No indicators 22.5 18.6

Table 1: Data Coverage for Monthly Constant Price Accounts (Output Components)

indicators and series for which no monthly information is available.3 It is debatable whether interpolands

of this last group of variables include any extra information about the business cycle. However, if a monthly

indicator of the whole of GDP is to be produced, it is necessary to interpolate these variables as well as

those for which monthly indicators do exist.

We work with a decomposition of the output measure of GDP into five sectors. Table 1 shows these

together with the codes describing the series in the ONS databank4. The terms Private and Public Services

are a convenient shorthand. Public Services covers all education and health as well as public administration

and defence. Some components of the first two items are marketed. Ownership of dwellings is included in

Private Services despite the fact that part of this industry is run by the state. Nevertheless, as will become

clear, the behaviour of the two service sectors is very different.

Table 1 also shows the availability of indicator variables 5 and each sector as a proportion of GDP in

1995 and in 2002; it is clear from this that the importance of the different sectors can change markedly over

a relatively short time period. Nevertheless, much the most important sectors are production and public

and private services. However, the size of each sector may be misleading when assessing its importance

3There is a further important reason for using the output measure as our reference point. The ONS regard this measure
as the single best indicator of short-term movements in economic activity. The expenditure measure, however, does not offer
a satisfactory alternative because there is no obvious means of interpolating changes to inventories which are very volatile.

4The data series for business services and government output consistent with current definitions go back only to 1983, while
the data on output at current prices, needed to weight together the the components of private sector service output begin in
1986. For years earlier than 1986 we have constructed a series of government output in constant prices using earlier data series
published in 1990 prices. We then use the output weights current used in the production index to calculate a series for private
sector output by deducting the government component from total services output. This simple procedure gives a series with
a correlation of 0.995 in one-period growth rates with the estimates of private sector output produced by chain-linking over
the period 1986Q2-2003Q4 for which the comparison can be made.

5The ONS also publishes a monthly index of distribution output going back to 1995. This is relevant to private services
output. However, it is published with a delay of eight weeks after the period in question and is therefore of little use in
producing prompt estimates of economic activity.
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Production Agriculture Construction Private Services Public Services

Production 13.71 -0.02 1.72 8.62 -0.15
Agriculture 0.08 0.04 -0.16 -0.02
Construction 2.18 3.67 0.07
Private Services 27.65 -0.03
Public Services 0.74

Notes. Sample Period: 1986Q2− 2003Q4. The calculation of these covariances is explained in footnote 7.
Table 2: The Covariance Matrix of Weighted Components of Output Growth: 1973Q2-2003Q4

of its contribution to short-term movements in GDP.6 Table 2 shows the covariance matrix of 103× the

quarter-on-quarter log changes of each component of GDP with the variables themselves scaled by their

percentage shares of GDP in 2002.7 Thus, (to first order), the scaled elements sum to 103× the log change
in GDP, and the variance measures shown are in effect contributions to the variance of the growth rate of

GDP.

Together, Tables 1 and 2 indicate that the areas where the data are relatively weak are also those

which do not contribute very greatly to the overall variability of GDP. For example, there is no monthly

indicator of fluctuations of output by Public Services. However, despite amounting to around 20% of

GDP, Public Services are a very small contributor to the overall variance of GDP; hence the absence of

such indicators may not matter greatly. The largest source of variance is Private Services for which it

is necessary to produce a good model from the available indicators if satisfactory interpolands of GDP

are to be produced. The second largest source is Production for which monthly data exist. Moreover

the covariance between movements in Private Services output and movements in Production suggests that

monthly production data in some form or other will be a factor behind understanding what happens to

the Private Services sector.

Published quarterly real GDP data have the property that the components of output do not sum to

the total measured at basic prices. This arises because undisclosed ‘other information’ is used in addition

to the information provided by the output series. To move from GDP at basic prices to GDP at market

6The movements in the relative sizes of the sectors over time do not complicate the overall modelling process. What is
important in producing an aggregate from estimates for the individual components is that the weights used are the same as
those used by the ONS in producing its data.

7Let zit denote the output index for the ith sector in quarter t and Ẑ the array whose (i, t)th element, ẑit = 1000 ×
log(zit+1/zit). The diagonal matrix Π has elements which are the weights shown in Table 1 for 2002. The table shows
Π(ẐP Ẑ0/T )Π, where P = IT − T−1ιι0, ι is a T -vector of units and T is the total length of the sample. Official service sector
data are not published at the level of aggregation shown here; the component series for private services have been weighted
together to produce a chain-linked index.
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prices, some allowance must be made for movements in the factor cost adjustment at constant prices. We

do this by calculating an estimate of GDP from the output data, GDP(O). We then use this as an indicator

variable to interpolate both GDP(B), GDP at basic prices, and GDP(M), GDP at market prices.

The main purpose of this paper is to describe how an indicator of monthly GDP may be constructed.

Section 3 briefly surveys earlier approaches to interpolation and also presents a summary of the interpolation

method of this paper using indicator variables.8 An account of the technique used for those series for which

there are no available indicator variables is given in section 4. Section 5 describes the reconciliation of the

fitted values of the interpolated monthly series with the available quarterly totals. The estimated equations

which underpin the interpolation of the constant price disaggregated outputs of Table 1 are presented in

section 6 whereas section 7 explains how we arrive at an estimate for monthly GDP at market prices.

Monthly estimates of GDP are presented in section 8 and the method for the production of early estimates

of quarterly GDP given in section 9. Section 10 concludes the paper. Appendix A presents full details

of the interpolation method used when no indicator variables are available. Appendix B outlines how the

model of section 3 may be cast in state-space form and estimated using the Kalman filter. Appendix B

also offers a brief comparison of the interpolands of section 5 with alternatives based on the Kalman filter.

3 Estimation

The interpolation procedure of this paper relies on the specification of a regression equation linking the low-

frequency to high-frequency data. This approach was developed from the early work of Friedman (1962)

by Chow & Lin (1971), Ginsburgh (1973) and Fernandez (1981) with parameter estimation addressed by

Palm & Nijman (1984). An attractive feature of this method is the similarity between the regression

equation specification and those encountered in conventional econometric research and macro-economic

models. The interpolation procedure consists of two steps. First of all, the unobserved high-frequency

interpolands are eliminated by aggregation of the underlying high-frequency regression model. The resul-

tant estimable regression relationship explains observed low-frequency data on the interpolands in terms

of suitable aggregates of observable high-frequency data on the indicators. Secondly, and subsequent to

parameter estimation, estimates of the unobserved high-frequency interpolands may then be produced by

means of the high-frequency regression equation using data on the observable high-frequency indicators.9

Chow & Lin (1971) suggested that the quarterly estimates of the interpoland should be regressed on

the quarterly aggregates of the monthly indicators. The estimated regression equation can then be used to

8A full account of the method, together with an investigation of its properties via a set of Monte Carlo experiments, is
provided in Salazar, Smith & Weale (1997).

9Corrado (1986) describes an application of Fernandez’s method to the United States’ National Accounts. Similar
regression-based methods are used by some statistical offices (e.g. in France and Italy) in the construction of quarterly
data.
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‘forecast’ the interpoland on a monthly basis with least-squares adjustment of the type suggested by Stone,

Meade & Champernowne (1942) used to ensure the monthly forecasts of the interpolands are consistent

with the known quarterly totals. The basis for the extension of this method by Fernandez (1981) uses

essentially the same approach.

There are a number of shortcomings of Chow and Lin’s method. Firstly, their approach relies on

the quarterly regression equation being expressed in the levels of the variables of interest. Many macro-

econometric regression equations, however, are often expressed in logarithms in an attempt to mitigate

problems of heteroscedasticity. An immediate and obvious difficulty is that the logarithms of three monthly

estimates do not add up to the logarithm of the quarterly estimate. Secondly, this method, because

it pre-dates much of the work on dynamic modelling, does not accommodate the possibility of some

dynamic structure linking the indicator variables to the interpoland. While the technique does not require

the assumption that the regression errors are white noise, an a priori specification of patterns of serial

correlation does not offer a satisfactory alternative to the specification of a general dynamic structure

(Hendry & Mizon 1978). Our procedure deals with these shortcomings and is therefore an important

generalization of Chow and Lin’s method. A third difficulty is the assumption that the explanatory

variables are exogenous influences on the interpoland. A concern about simultaneity arises, of course,

in any regression setting where the regressors are contemporaneous with the regressands. In principle it

should be possible to devise an instrumental variable version to deal with the this issue, although we have

not done so here as it is beyond the scope of the current paper. An alternative approach based on an

extension of the bi-variate method described by Harvey & Chung (2000) which assumes that both low and

high frequency variables are driven by underlying latent variables might also prove to be efficacious.

The problem addressed in this paper then is the estimation of the unobserved monthly interpoland yt,m,

where the subscript t indicates the particular quarter and m the month within that quarter, m = 1, 2, 3,

t = 1, ..., T . The basis for interpolation is a monthly regression equation linking yt,m to the observed

monthly indicator variables xjt,m, j = 1, ..., k. Firstly, to allow for the possibility that the dependent

variable in the monthly regression equation is a non-linear function of the interpoland yt,m, let

ht,m ≡ h(yt,m),

where the function h(.) is assumed to be known, for example, the logarithmic transformation. Of course,

the exogenous indicator variables xjt,m, j = 1, ..., k, in the regression may themselves also be transformations

of other underlying variables. Secondly, consider a dynamic monthly regression equation defined in terms

of ht,m linking the k observed indicator variables xjt,m, j = 1, ..., k, to the unobserved monthly interpoland

[6]



yt,m:

α(L)ht,m = β0 +
kX

j=1

βj(L)x
j
t,m + �t,m, m = 1, 2, 3, t = 1, ..., T. (3.1)

where L is the monthly lag operator and α(L) = 1− Pp
i=1 αiL

i and βj(L) =
Pqj

i=0 βj,iL
i are scalar lag

polynomials of orders p and qj respectively operating on the unobserved transformed monthly dependent

variable ht,m = h(yt,m) and the observed monthly indicator variable x
j
t,m, j = 1, ..., k. It is assumed that

the lag lengths p and qj , j = 1, ..., k, are chosen sufficiently large so that the error terms {�t,m} may be
assumed to be white noise (zero mean, constant variance, and serially uncorrelated) and uncorrelated with

lagged values of ht,m and current and lagged values of {xjt,m}.
The regression equation (3.1) is quite general. For example, if αi = 0, i = 1, ..., p, then the model

is static in the level of ht,m. Other values for the parameters {αi} allow a general specification of the

dynamics in (3.1). In the special case in which the sum of the coefficients on the dependent variable and its

lags is zero, that is,
Pp

i=1 αi = 1, the lag polynomial α(L) on the left hand side of (3.1) may be re-expressed

as a scalar lag polynomial of order p − 1 operating on the first difference of the dependent variable ht,m.
For example, if α1 = 1 and αi = 0, i = 1, ..., p, then the model involves the monthly first difference of

ht,m. When
Pp

i=1 αi 6= 1, there is a long-run relationship linking the levels ht,m and xjt,m, j = 1, ..., k; in

particular, if ht,m and xjt,m, j = 1, ..., k, are difference stationary, there exists a co-integrating relationship

between ht,m and xjt,m, j = 1, ..., k. Furthermore, in this case, a test of the restriction
Pp

i=1 αi = 1

corresponds to a test of the null hypothesis that there is no co-integrating relationship linking ht,m and

xjt,m, j = 1, ..., k; see Engle & Granger (1987).

Estimation of the unknown parameters in (3.1) is not completely straightforward. The monthly vari-

ables ht,m = h(yt,m) are not observed whereas we do observe the quarterly aggregates of the interpolands

{yt,m}
yt =

3X
m=1

yt,m.

Firstly, therefore, we need to aggregate (3.1) in such a manner as to yield a regression equation involving

only the observable quarterly aggregates yt, t = 1, ..., T . Secondly, we will need to deal with the implications

of aggregation for the error structure of the resultant regression equation. For simplicity of exposition, we

deal here only with the case in which the maximum lag length of α(L) is unity, that is, p = 1. Hence, we

write α(L) = 1− αL.10

To achieve the first objective, we note that (1 + αL + α2L2)(1 − αL) = 1 − α3L3. Thus, we may

transform (3.1) into a regression equation involving only third-order lags of ht,m by pre-multiplying (3.1)

by (1 + αL+ α2L2) which yields

10In the application we also limit ourselves to this case. More generally, the lag polynomial α(L) is factored in terms of its
roots and each factor may then be treated using the method described here. See Salazar et al. (1997) for further details.
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ht,m = α3ht−1,m + (1 + α+ α2)β0 + (1 + αL+ α2L2)

 kX
j=1

βj(L)x
j
t,m + �t,m

 . (3.2)

Consequently, in the transformed regression equation (3.2), ht,m depends on its value three months previ-

ously as well as on the exogenous indicator variables. Aggregating (3.2) across quarter t:

3X
m=1

ht,m = α3
3X

m=1

ht−1,m + 3(1 + α+ α2)β0 +
3X

m=1

(1 + αL+ α2L2)

 kX
j=1

βj(L)x
j
t,m + �t,m

 (3.3)

If (3.3) had been expressed in terms of yt,m rather than ht,m = h(yt,m) it would now involve the

quarterly endogenous variable yt and thus be feasible for estimation. To obtain an operational formulation

of (3.3), we exploit Taylor’s theorem which yields h(yt,m) = h(ȳt) + h0(ȳt)(yt,m − ȳt) + O[(yt,m − ȳt)
2],

where ȳt = yt/3 is the monthly average in quarter t and h0(·) is the first derivative of h(·). Hence,

h(yt,m)
.
= h(ȳt) + h0(ȳt)(yt,m − ȳt) with an error of approximation which is second order in the difference

yt,m − ȳt, m = 1, 2, 3. Aggregating across quarter t, we have:

3X
m=1

ht,m
.
= 3h(ȳt) +

3X
m=1

h0(ȳt)(yt,m − ȳt) (3.4)

= 3h(ȳt),

as the errors of approximation sum to zero, viz.
P3

m=1(yt,m − ȳt) = 0. This approximation will be

particularly accurate if the errors of approximation yt,m − ȳt, m = 1, 2, 3, are relatively small or if the

function h(·) is slowly changing across the monthly values yt,m,m = 1, 2, 3, in quarter t.11 For a logarithmic

transformation, (3.4) becomes:
3X

m=1

log yt,m
.
= 3 log yt − 3 log 3, (3.5)

which is equivalent to replacing the geometric mean of the monthly values yt,m, m = 1, 2, 3, by the

arithmetic mean ȳt. The geometric mean is never larger than the arithmetic mean, but, if monthly

movements are small compared with the monthly average, the approximation error introduced should be

of little importance. The approximation is likely to be better than a conventional first-order approximation

because the sum of the errors of the approximation is itself close to zero. Experimentation suggests that

for a variable like constant price GDP which is unlikely to change by more than a percentage point in any

month (3.5) is a very good approximation and that higher order terms raise no concerns.

Consequently, the substitution of the approximation (3.4) into (3.3) provides a regression equation

feasible for estimation. Note that the covariance structure of the error terms in (3.3) is a function of the

11By the mean value theorem h(yt,m) = h(ȳt) + h0(y∗t,m)(yt,m − ȳt), where y
∗
t,m lies between yt,m and ȳt. If h

0(y∗t,m) is
approximately constant, m = 1, 2, 3, then

P3

m=1
ht,m

.
= 3h(ȳt).

[8]



parameter α. In the results that follow, we use maximum-likelihood estimation.12

Appendix B sets up the interpolation problem described above in state-space form for comparison

purposes with the approach suggested by Harvey & Pierse (1984) and Harvey (1989). The state-space

reformulation may then be readily estimated using the Kalman filter, but, this reformulation suffers from

being less transparent relative to the more familiar regression framework exploited above.

4 Interpolation without Indicator Variables

Table 1 indicates that there are some sectors, Agriculture and Public Services, for which there are no

obvious indicator variables available. One could nevertheless estimate (3.3) as a pure autoregression.

However, the application of this approach to the public sector raised an interesting practical problem. The

estimated coefficient α3 in (3.3) was of the order of −0.2 when estimated on quarterly data. Extracting
the cube root to estimate α in (3.1) yielded a figure of about −0.6. This implies an implausible amount of
month-on-month movement for a variable which is generally believed to be smooth. Consequently, we felt

it would be better to seek a method which preserved the generally-accepted smoothness of the series.

We therefore constructed preliminary estimates of the monthly data {ỹt,m} from a simple two-sided

moving average filter employing equal weights in terms of the monthly averages; viz.

ỹt,1 = 2ȳt/3 + ȳt−1/3, ỹt,2 = ȳt, ỹt,3 = 2ȳt/3 + ȳt+1/3,

where ȳt = yt/3. We assume that the unobserved monthly data are linked to these preliminary estimates

by the approximate model

∆1ht,m = ∆1h(ỹt,m) + �t,m, (4.1)

where ∆1 = 1 − L is the monthly difference operator and �t,m is as in section 2. Again, the functional

transformation h(.) used in the application discussed in section 5 is logarithmic.

5 Reconciliation of the Interpolands

The estimators of the parameters of the monthly regression equation (3.1) may then be used to produce

fitted values of the interpolands {yt,m}. These fitted values, however, need to be reconciled with the
observed quarterly data {yt}. Our estimate of {yt,m} minimises the sums of squares of the residuals in the
regression equation (3.1) subject to the constraint that the interpolated monthly values in each quarter

sum to the known quarterly totals, that is,
P3

m=1 yt,m = yt.

12Salazar et al. (1997) study the properties of the ML estimators of the parameters β0, {αi} and {βj,k} via Monte-Carlo
experiments when the error terms {�t,m} are independently and identically distributed normal variates. The ML technique
peformed well on samples of the size available in practice.

[9]



For simplicity, we again confine attention to the first order case; viz. p = 1. We assume that observations

are available on the quarterly totals yt for quarters t = 1, ..., T . Firstly, recall (3.1)

ht,m = αht,m−1 + β0 +
kX

j=1

βj(L)x
j
t,m + �t,m, (5.1)

where, for the first quarter, t = 1, m = 2, 3 and, for the remainder, m = 1, 2, 3, t = 2, ..., T . The problem

then reduces to optimising the Lagrangean

3X
m=2

�21,m +
TX
t=2

3X
m=1

�2t,m +
TX
t=1

λt

Ã
3X

m=1

yt,m − yt

!
, (5.2)

where λt is the Lagrange multiplier associated with the constraint
P3

m=1 yt,m = yt, t = 1, ..., T . Therefore,

the first-order conditions are given by

h0(yt,m)(�t,m − α�t,m+1) + λt = 0,m = 1, 2, 3, t = 1, ..., T, (5.3)

where �1,1 = 0 and �T+1,1 = 0.

Equation (5.3) can be solved jointly with the adding-up constraints,
P3

m=1 yt,m = yt, t = 1, ..., T , to

produce estimates of the interpolands ŷt,m, m = 1, 2, 3, t = 1, ..., T , and the Lagrange multipliers, λ̂t,

t = 1, ..., T . The solution is inherently nonlinear because the derivatives h0(.) in (5.3) are a function of the

estimated interpolated data {ŷt,m}, which, in principle, necessitates the use of iterative methods. However,
when the transformation h(.) is logarithmic, our experience indicates that the derivatives h0(.) in (5.3)

may be satisfactorily evaluated at the monthly average ȳt of the corresponding quarterly total yt, hence

avoiding further iteration. Further details concerning the solution of (5.3) are presented in Salazar et al.

(1997).

At the same time as interpolating the data, we are able to produce estimates of approximate expressions

for the variances and covariances of the estimated interpolands {ŷt,m}. Including only terms of order Op(1),

the source of error due to the estimation of the regression parameters is asymptotically irrelevant. Hence,

only the random component represented by the error terms {�t,m} is pertinent. Details of the requisite
calculations are provided in Salazar et al. (1997).

In the case when there are no indicator variables available, the approach to interpolation is essentially

similar. It is necessary merely to substitute the expression for �t,m given in (4.1) into the Lagrangean (5.2).

Details for the calculations of the interpolands and their approximate variances are set out in Appendix

A.

6 Monthly Estimates of Constant Price GDP

The components of output fall into three categories in the calculation of monthly GDP. For industries

covered by the index of production, the index values simply indicate monthly output. Of the remaining
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four industries identified, we are, for Agriculture, Construction and Public Services13 forced to use the

approach described in section 4, while for Private Services we use the indicator variable method of section

3.

Agriculture, Construction and Public Services

There are no relevant monthly indicator variables for Agriculture and Public Services. Moreover, there

is no obvious reason to presume that the output of Agriculture or Public Services should be closely linked

to the various monthly data which do exist. For Construction, although there are monthly indicators, the

only timely monthly indicator is the survey run on behalf of the European Commission (DG-ECFIN) which

asks construction firms whether the trend of output in recent months has been rising, stable or falling. We

were unable to find a satisfactory model built round this; the reason may well be that the responses to

these questions can lag output movements substantially (Weale 2004).

Variable Code x Order ∆1x Order log(x) Order ∆1 log(x) Order

Agriculture gdqa -3.165 1 -7.541 3 -3.471 1 -7.580 3
Construction gdqb -1.353 0 -5.484 1 -2.164 2 -5.656 1
Public Services puse -1.351 0 -8.394 0 -1.819 0 -8.891 0

Sample period 1976Q4-2003Q4.
The heading x indicates that the test is applied to the raw series. The headings ∆1x, log(x) and ∆1 log(x)
indicate that the tests are applied to these transformations of the raw data. When applied to the (log) first
differences, ∆1x or ∆1 log(x), ADF test statistics are calculated using ADF regressions with an intercept
and lagged first differences of the dependent variable. When applied to (log) levels, x or log(x), ADF
regressions with an intercept, a linear time trend and lagged first differences of the dependent variable are
used. The relevant lower 5% present and -3.45 when it is present. The lag order, “Order” is chosen by
BIC with a maximum order of 24 for monthly variables and 12 for quarterly variables. All regressions are
estimated over the same sample period.

Table 3: ADF Tests for Agriculture, Construction and Public Services

Table 3 presents augmented Dickey-Fuller (ADF) statistics for the output of Agriculture, Construction

and Public Services. The sample period of the ADF tests depends on the lag order used. In this and

subsequent tables of ADF statistics the sample periods shown relate to the tests with the highest lag order

given in the tables. The lag order selected is that of the ADF regression equation which delivers the lowest

BIC value with BIC calculated from the standard error of the regression equation.

This table suggests that these components of the output index are stationary in logarithmic first

differences. Accordingly, we apply the method set out in section 4 and Appendix A, interpolating the data

on the basis of the quarter-on-quarter growth rate (assumed to be measured between the middle months of

13For the precise meaning of the terms public and private services see section 2.
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adjacent quarters), minimising the sum of the squared month-on-month changes subject to the requirement

that the monthly data add to the quarterly estimates.

The equation standard error for the model of section 4 is estimated using the procedure described in

Appendix A. We find that for Agriculture the estimated standard error is 0.41%, while for Public Services

it is 0.10%. However, these standard error estimates apply to the percentage growth rate from one quarter

to the next before the adding-up constraints are taken into account. After due allowance is made, we find

that the average estimated standard error in the level of the monthly data, measured as a proportion of

its interpolated value, is 0.22% for Agriculture and 0.06% for Public Services. The average monthly errors

in the rates of change have to be calculated as shown in Appendix A. These are 0.33% for Agriculture and

0.08% for Public Services.

Private Services

The output of Private Services was interpolated by means of indicator variables. A preliminary search

on quarterly data (making no adjustment for the moving-average error process present in equation (3.3))

suggested that the growth in Private Services output was related to growth in retail sales and to growth

in manufacturing output (but not to the movements in the other components of the index of production).

The qualitative data on recent output movements in the sector produced by the European Commission

have been available only since 1997 and are therefore not used in our modelling.

Table 4 shows ADF statistics for the variables concerned. Once again we are able to accept the

hypothesis that the variables of interest are I(1). No co-integrating vector could be identified linking the

variables, the hypothesis that the lagged level variable did not enter the equation in differences (α = 1 in

equation 3.2) was easily accepted, χ21 = 0.06. Such an outcome should not be too surprising; it merely

indicates that the components of this sector which are not reflected in our indicators may follow their own

individual stochastic trends. In consequence, the underlying monthly equation links first differences in the

indicator variables to first differences in the interpoland.

Table 5 displays the resultant estimated regression equation. This equation is possibly the most impor-

tant tool in the interpolation of constant price GDP. The diagnostic tests all appear satisfactory and the

within-sample fit is good, with an R2 of 0.60 and an estimated standard error of around 0.4%.14 The esti-

mated equation is expressed in monthly terms, linking observed monthly changes in the indicator variables

to the unobserved monthly changes to Private Services output.

14If α = 1, equation (3.3) can be estimated by generalised least squares since the structure of the variance matrix of the
residuals is known. The diagnostic tests are calculated after transforming the independent and dependent variables which
renders the transformed equation errors as independently and identically distributed.
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Variable Code x Order ∆1x Order log(x) Order ∆1 log(x) Order

Private Services pss1 -1.251 2 -4.718 1 -2.328 2 -5.215 1
Retail Sales rett -0.173 2 -17.949 1 -2.503 2 -18.784 1
Manufacturing ckyy -2.208 1 -25.285 0 -2.188 1 -25.206 0
Import Volume imvo -1.588 2 -21.262 1 -2.840 2 -19.670 1

Sample Period: Quarterly Variable 1976Q4-2003Q4 Monthly Variables 1975M4-2003M12.
See Table 3 for other notes.

Table 4: ADF Tests for Private Services and Related Monthly Indicators

Dependent Variable is ∆1 log(Private Services)
Variable Code Coeff. t-value s.e.

Constant 0.005 6.401 0.001
∆ln RetailSales−0 rett 0.370 7.959 0.047
∆ln Manufacturing−0 ckyy 0.289 4.058 0.071
∆ln Manufacturing−1 ckyy -0.247 -2.220 0.112
∆ln Manufacturing−2 ckyy 0.245 3.235 0.076

DW R2 s.e.
2.306 0.6031 0.004534

Sample Period: 1973Q3 to 2003Q4.

Chow Test (forecast adequacy) F(4,113) = 1.033 [0.3933]
Theil test based on forecast mean = 1.024
Theil test based on lagged value = 1.5
Bera-Jarque normality test = 2.635 [0.2678]
Serial correlation: F(1,116) = 2.89 [0.09182] F(4,113) = 0.7498 [0.5601]
ARCH test: Chi(1) = 0.2253 [0.635] Chi(4) = 4.262 [0.3717]
Chow test (parameter stability), F(5,112) = 1.448 [0.2126]
MSE of estimate of level data : 0.2474%
MSE of month-on-month growth rate [in % points] : 0.3691%
MSE of rolling quarter-on-quarter growth rate [in % points]: 0.1661%

Table 5: Regression Equation for Private Sector Services
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7 The Residual Error and Adjustment to Market Prices

Until 1990 there were three published estimates of GDP calculated from output, income and expenditure

data. Since then there has been a single measure of GDP at basic prices, which is output-based. Neverthe-

less, there are discrepancies between the published measure of GDP and the figure that can be calculated

from the output indices because the former takes into account information from income and expenditure

data.15

We deal with this problem by aggregating as described in section 2. We use the published weights

shown in Table 1 to aggregate the four monthly interpolated series described above together with industrial

production which thereby gives an estimate of the output measure of GDP, GDP(O). We then use this

measure as an indicator variable to interpolate the published measure of GDP at basic prices, GDP(B),

using the method described in section 5, but imposing a unit coefficient on GDP(O) reflecting a very strong

prior on the nature of the underlying relationship.16 Thus we assume an underlying relationship between

the monthly variables of the form

∆1 log(GDP (B)t,m) = ∆1 log(GDP (O)t,m) + εBt,m.

where εbt,m is a disturbance term initially assumed to be zero but then estimated through solving the

Lagranean problem of the form given by equation (5.2).We also have to move from GDP at basic prices,

GDP(B), to the headline figure, GDP at market prices, GDP(M). We deal with this in the same way. We

assume that percentage changes are matched, one for one, but with εMt.m a disturbance term,

∆1 log(GDP (M)t,m) = ∆1 log(GDP (B)t,m) + εMt,m.

We then impose the constraint that the interpolated market price data are consistent with the quarterly

totals.

The estimated standard errors of the interpolated data depend on the period in question. Table 6

presents the standard errors for GDP(O), calculated as described above, for each of the months in the

quarter, together with the mean standard errors associated with estimates of the month-on-month and

rolling quarter-on-quarter changes in the interpoland.

Table 7, in turn, shows the mean of the standard errors of the estimates of the published measure of

GDP, GDP(M). These figures reflect the extra components arising from the discrepancy between GDP(O)

and GDP(B) as well as the gap between GDP(B) and GDP(M).

15See, for example, footnote 2, p. 28, in Economic Trends, July 1996.
16In any case estimation would be complicated by the fact that discrepancies are usually somewhat greater with more recent

data and are subsequently revised away.

[14]



Month in Levels Month on Quarter on
Quarter (%) Month (%) Quarter (%)

1 0.1113 0.1308 0.1042
2 0.0869 0.1654 0.1042
3 0.1113 0.1660 0.0000

Table 6: Standard Errors in GDP(O)

Month in Levels Month on Quarter on
Quarter (%) Month (%) Quarter (%)

1 0.1295 0.1517 0.1214
2 0.1006 0.1922 0.1214
3 0.1295 0.1922 0.00

Table 7: Standard Errors in GDP(M)

In general, the interpoland standard errors appear to be quite stable, and the results are consistent with

the mechanics of the interpolation procedure. The standard errors associated with GDP(M) are slightly

larger than those of the output measure GDP(O) because the latter is used as an interpolator for the

former. The standard error of GDP(M) therefore reflects the standard error of GDP(O) and an additional

interpolation error.

8 A Time Series of Monthly and Rolling Quarterly Estimates of GDP

Figure 1 shows our estimates of the seasonally adjusted monthly rate of growth of the UK economy from

January 1985 to March 2004. The underlying data were used by Artis (2002) in his analysis of the business

cycle in the United Kingdom. A feature of the data that may cause concern is the short-term noise which

they show. This arises from the volatility of industrial production as a direct contributor to GDP and

also because it and retail sales (which can also be volatile) are used as indicators for the interpolation of

Private Services output. Because of this volatility, users may find the rolling quarterly movement of the

series more helpful. This is also shown in figure 1.

Programmes have been written in MATLAB to compute the estimates taking the source data from

Datastream. The whole process takes about 20 minutes and the National Institute of Economic and Social

Research releases its estimates of monthly GDP in the afternoon of the day on which ONS publishes its

figures for industrial production. The time lag means that monthly estimates are produced about five

weeks after the month to which they relate, for example, in early April we produce an estimate of GDP in

February. The data are released to subscribers one and a half hours ahead of the press release. Academic

users should approach mgdp@niesr.ac.uk for free access to the full time-series.
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Figure 1: Monthly and Rolling Quarterly Estimates of UK GDP Growth
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9 An Early Quarterly Estimate of GDP

Our emphasis on the rolling quarterly estimate raises the question whether an early estimate can be

produced of the rolling quarterly GDP growth rate by combining two months of GDP estimates with

forecasts for the third month. Even if the forecast for the third month is relatively poor, the estimate of

the quarterly growth rate may be satisfactory. We link the rolling quarterly figures to the month in which

the rolling quarter ends rather than the month on which it is centered so as to mesh with official quarterly

data.

Regular production of such a quarterly estimate implies that after each calendrical quarter an estimate

of quarterly GDP growth for the quarter will be produced at the same time as the official estimate of

industrial production for the penultimate month of the quarter is published. This is about six days after

the end of the quarter in question. It anticipates the first official estimate of quarterly GDP growth by

about three weeks. Thus a comparison of our estimates of quarterly GDP growth with the first official

data provides a means of assessing the performance of the framework in real time.17

There are a number of ways of producing the requisite forecast of monthly GDP. We forecast the

monthly input series using autoregressive models in which, because of its explanatory power, the short-

term interest rate is included as well as the variable of interest; only one month needs to be forecast so

we do not need to concern ourselves with the prediction of the short-term interest rate. The models are

re-estimated each month and the lag length of each model is given by the longest lag term which has a

statistically significant t-statistic. The forecasts for the monthly variables are used directly in the case

of industrial production or as inputs in the production of monthly estimates of Private Services output.

Output of Construction and Agriculture is forecast by assuming no change. Output of Public Services is

forecast by using a quarterly autoregression. A lag length of unity proved adequate although the resultant

model does not have much explanatory power. The forecast generated is then used as an additional

observation ahead of the application of the interpolation method of section 4.

We regard the appropriate means of verification of our estimates to be a comparison with the first

official estimates on the grounds that the dataset available to us is a subset of the data available when the

first ONS estimates are produced. The question of revisions and their predictability is an important but

different issue. Figure 2 shows the comparison. We note that the R2 between the current and lagged first

estimates is 0.07 while the corresponding R2 for the estimates generated by our method is 0.8. Thus our

method has an explanatory power which is very much greater than that from a random walk forecasting

model; there is therefore little need for a formal test of relative performance.

17The information used is a subset of the information available when the first official estimate is produced. Thus the
appropriate comparision is with the first and not with the final estimate of GDP growth.
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Figure 2: Quarterly Estimates of GDP Growth: a Comparison of NIESR Early Estimates with First Official
Estimates

The RMSE is low compared with what the standard errors in table 7 might lead one to expect. Since

the exercise is out of sample and the data for the third month are forecast the RMSE might be expected

to be markedly higher than the RMSEs for rolling quarters which do not concide with the calendrical

quarters used for the official data. However our early estimate uses a larger subset of the data available

to the ONS when it produces its first estimate than when the data settle down to their final values. Thus

measured against the first ONS estimate out-of sample real time projections it is not so surprising to find

an RMSE lower than that deduced within sample from a single vintage of data. Koenig, Dolmas & Piger

(2003) come to a similar conclusion for the United States. They find that predicting quarterly US GDP

growth from real time estimates of employment, industrial production and retail sales their model has an

RMSE of 0.20% points against the first estimate of GDP growth (at a quarterly rate) and a RMSE of

0.27% points against the final estimate

There are only two occasions in the period 1998− 2003 when the error was as large as 0.3 percentage
points. When running the model in real time ahead of publication in 1997 there was a third occurrence

of an error of 0.3 percentage points, in 1997Q3. Two of these three occasions were associated with the
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Royal Family. The first was because the funeral of the Princess of Wales took place in September, the

third month of the quarter. This depressed economic activity for one day in September, in a manner that

could not have been anticipated by a forecasting model. The second royal occasion was Queen Elizabeth’s

Golden Jubilee. This led to production being moved forward from June to May. Our forecasting model

responded to the high level of output in May and predicted much of it would persist until June whereas

in fact there was a sharp fall in output in June. This problem was only partly identified by the time the

first official estimates were published. Our estimate of 1.2% growth in 2002Q2 was superseded by a first

official estimate of 0.9% growth and a second official estimate of 0.5% growth. The third event which led

to an error of 0.3% in our early estimates took place in September 2000. For about a week fuel depots were

blockaded by protests about the price of road fuel which depressed output in a way that our forecasting

models, again, could not be expected to anticipate.

A lesson to be drawn from these experiences is that there may be scope for improving on the performance

of the early estimates of quarterly growth in real time by the introduction of “judgement”, i.e. specific

knowledge about events which have happened but which are not represented in the data. In 1997Q3 and

2000Q3 it was plain that there had been a negative shock to output in the third month of the quarter. It

is not absolutely clear how the size of negative shocks of this sort should be measured but a reduction of

0.1% points to the quarterly growth rate would have been an improvement. In 2002Q2 careful questioning

of ONS about working day adjustments might have indicated the problem. Such judgement is, however, a

response to rare events not yet reflected in the data available rather than an arbitrary departure from a

properly-articulated statistical framework. Hindsight certainly teaches that, in a real-time exercise of this

sort, one should be awake to shocks in the forecasts used to produce the data estimates; it is unclear how

far this would have improved the performance of the approach in real time.

Finally we note that the ONS first estimates are, like our own, constructed using forecasts of industrial

production in the third month of the quarter. If they were to make their forecasting models and the forecasts

themselves public it would be possible to improve the performance of the early estimates presented here by

ensuring that the industrial production forecasts used were the same as those entering the ONS calculations.

10 Conclusions

Economic policy makers and people in occupations which involve anticipation of changes to economic policy

need prompt indicators of the state of the economy and an efficient means of ‘nowcasting’ by aggregating

the disparate pieces of data which appear ahead of estimates of real GDP change. The problem is of course

open to formal statistical analysis and we have set out here a coherent and satisfactory means of estimating

the current state of economic activity. It produces an economic indicator (monthly GDP) which, unlike
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some measures based on latent variables, relates directly to standard measures of economic activity. When

allied with short-term forecasting techniques it can also be used to produce rolling quarterly estimates of

GDP growth about six days after the end of the quarter concerned and therefore, once a calendar quarter,

to anticipate official GDP data by about three weeks.

We have done this in real time for the last six years, making the results available each month by press

release and with the full series available to academic users. Comparison of our rolling quarterly estimates

with the first official estimates of GDP growth published by ONS offers a means of verifying the approach

and of assessing the real-time reliability of these estimates. The R2 with the first official estimates is 0.8

and the root mean square forecast error is 0.13 percentage points. In the light of this information on

quality users such as the Monetary Policy Committee can decide how best to make use of the estimated

data.

The real time assessment of the system suggests a degree of robustness; the pattern of errors against

the official data shows no evidence of heteroscedasticity although one might be concerned that eventually,

with the declining importance of the production sector as shown in Table 1, an indicator which relies

heavily on the manufacturing output index both directly (in estimating private service output) and as a

component of production must eventually lose its utility. The long-term solution to this is obviously for

the ONS to improve its collection of data on the service sector to the point where there are timely official

monthly indices of both construction and service output. The Statistics Commission has recommended

exploring the first as a means of improving the ONS’ own early estimates (Mitchell 2004, p.11) and the

Allsop Review (Allsopp 2004) has recommended a range of improvements in service sector statistics which

may lead to the latter. If or when these happen the problem will be largely reduced to that of forecasting

the third month of each quarter from data which extend to the second month; solutions to this problem

are well understood and widely discussed.

While it might be thought that the method could readily be extended to other countries, it must be

pointed out that the production of UK estimates is greatly facilitated by the fact that value added in the

production sector is measured by the industrial production index. This is not typical; in other countries

industrial production would simply be an indicator used to produce early estimates of the value added

by the industrial sector.18 A conclusion from our efforts to apply the technique elsewhere is that work of

this type is best done by someone with detailed knowledge of the particular characteristics of the data of

the country in question and close contact with the statistical office concerned. Nevertheless, the proposed

framework for interpolation and short-term forecasting provides a structure for an indicator of economic

18Nor is it appropriate. The UK approach assumes that intermediate inputs move in line with outputs in the short
term. Producers of early estimates in other countries, e.g. Deutsches Institut für Wirtschaftsforschung, model output and
intermediate input separately.
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activity which is both interpretable and verifiable.
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A Interpolation without Indicator Variables

A.1 Data Estimation

When there are no indicator variables available, we adopt the following model as in (4.1):

∆1ht,m = ∆1h(ỹt,m) + �t,m, (A.1)

m = 2, 3, t = 1, m = 1, 2, 3, t = 2, ..., T , where ∆1 = 1−L is the first difference operator and ỹt,m denotes

the monthly data constructed by the crude interpolation method described in section 3. Effectively, (A.1)

corresponds to (3.1) with α = 1 and β0 +
Pk

j=1 βj(L)x
j
t,m set equal to ∆1h(ỹt,m). The solution for the

interpolands, yt,m, m = 1, 2, 3, t = 1, ..., T , may be obtained from equation (5.2).

A.2 An Approximate Variance for the Interpolands

In order to estimate the error variance σ2� , we proceed as in section 3. Firstly, multiply (A.1) by the lag

polynomial 1 + L+ L2. Hence,

∆3ht,m = ∆3h(ỹt,m) + ut,m, (A.2)

where ∆3 = 1− L3 and ut,m = (1 + L+ L2)�t,m. Secondly, aggregating (A.2) across quarter t gives

3X
m=1

ht,m −
3X

m=1

ht−1,m =
3X

m=1

h(ỹt,m)−
3X

m=1

h(ỹt−1,m) +
3X

m=1

ut,m. (A.3)

Applying the approximation (3.4) to (A.3) results in

3[h(ȳt)− h(ȳt−1)]
.
=

3X
m=1

h(ỹt,m)−
3X

m=1

h(ỹt−1,m) + ut, (A.4)

where ut =
P3

m=1 ut,m. Now, ut in (A.4) is a moving average process of order 1 with var{ut} = 19σ2� and
cov{ut, ut−1} = 4σ2� . Hence, neglecting the approximation error in (A.4), an unbiased estimator for the

error variance σ2� is given by [
PT

t=2 u
2
t + 2

PT
t=3 utut−1]/[27(T − 1)− 8].

B A State-Space Formulation

This appendix relates the regression-based approach of sections 3 and 5 to the state-space approach con-

sidered in Harvey & Pierse (1984) and Harvey (1989). For ease of exposition we confine attention to the

case when h(yt,m) = yt,m and continue to focus on an AR(1) model for yt,m.
19 Both approaches consist of

19When h(yt,m) 6= yt,m, just as our approach requires an approximation, see equations (3.4) and (3.5), the state-space
approach would use the extended Kalman filter to approximate the likelihood function. See Harvey (1989, pp. 160-162).
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two-steps, first of all eliminating the “incidental parameters” {yt,m} by aggregation in order to consistently
estimate α, and, secondly, given the resultant estimator for α, to estimate the interpolands {yt,m}.

First re-consider the estimable equation (3.3), ignoring for expositional ease any indicator variables,

yt = α3yt−1 + 3(1 + α+ α2)β0 + ut (B.1)

where yt =
3P

m=1
yt,m and ut has the following moving average (MA) structure:

ut = �t,3 + (1 + α)�t,2 + (1 + α+ α2)�t,1 + (α+ α2)�t−1,3 + α2�t−1,2. (B.2)

We now show that equation (B.1) with MA errors (B.2) is in fact identical to that considered in the

state-space approach.

To cast eq. (3.1) in state-space form, we define the measurement and transition equations respectively

as

yt,m = st,m, (B.3)

st,m = αst,m−1 + �t,m, (B.4)

where st,m denotes the (scalar) state variable and yt,0 = yt−1,3, t = 2, ..., T ; cf. Harvey (1989, eq. (6.3.1),

p.310) in which z = 1, T = α and R = 1. Because yt,m is unobserved whereas yt =
P3

s=1 yt,s is,

system (B.3)-(B.4) is not estimable. Hence, we define the cumulator yft,m =
Pm

s=1 yt,s, cf. Harvey (1989,

eq. (6.3.13), p.313). Defining the indicator variable ψm = 0 if m = 1 and 1 otherwise, we augment

the transition equation (B.4) with yft,m to obtain the revised measurement and transition equations from

(B.3)-(B.4):

yt =
³
0 1

´Ã st,m
yft,m

!
, m = 3, t = 1, ..., T, (B.5)Ã

st,m
yft,m

!
=

Ã
α 0
α ψm

!Ã
st,m−1
yft,m−1

!
+

Ã
1 0
1 1

!Ã
�t,m
0

!
; (B.6)

see Harvey (1989, eq. (6.3.16), p.314). The consequent measurement and transition equations for the

observables are obtained after repeated substitution for the state variable st,m in (B.6):

yt =
³
0 1

´Ã st
yt

!
, (B.7)Ã

st
yt

!
=

Ã
α3 0P3
i=1 α

i 0

!Ã
st−1
yt−1

!
+

Ã
1 0
0 1

!Ã P2
r=0 α

r�t,3−rP2
r=0(

Pr
s=0 α

s)�t,3−r

!
, (B.8)
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where st,3 is re-defined as st, t = 1, ..., T ; cf. Harvey eqs. (6.3.20a, 6.3.20b).

ML estimation of α is based on (B.7)-(B.8) via the prediction error decomposition; see Harvey (1989).

System (B.7)-(B.8) is easily seen to be equivalent to the observable regression equation (3.3) by sub-

stitution for the unobserved state variable st−1 = α3st−2 +
P2

r=0 α
r�t−1,3−r in yt = (

P3
i=1 α

i)st−1 +P2
r=0(

Pr
s=0 α

s)�t,3−r of (B.8) noting (
P3

i=1 α
i)st−2 = yt−1 −P2

r=0(
Pr

s=0 α
s)�t−1,3−r. Re-arranging yields

the following regression equation in term of observables:

yt = α3yt−1 + �t,3 + (1 + α)�t,2 + (1 + α+ α2)�t,1 + (α+ α2)�t−1,3 + α2�t−1,2,

which is equivalent to eq. (3.3). Of course, estimates of α may still differ in finite samples due to different

initialisation assumptions.

Given an estimate for α the Harvey-Pierse approach then computes “smoothed” estimates for the

missing observations, yt,m, from (B.5)-(B.6); see Anderson & Moore (1979) for details of various smoothing

algorithms. The smoothed estimator of the state st,m|T = E[st,m|y1, ..., yT ], where st,m = (st,m, y
f
t,m)

0,

exploits information from t = 1, ..., T , and delivers the minimum mean squared error estimator of st,m given

the whole information set; see Anderson & Moore (1979) and Harvey (1989). Specifically (Jazwinski 1970,

p. 151) the smoothed estimator st,m|T , t = 1, ..., T , m = 1, 2, 3, is such that it minimises the following

criterion:
1

2σ21,1
�21,1 +

1

2σ2

3X
m=2

�21,m +
1

2σ2

TX
t=2

3X
m=1

�2t,m, (B.9)

subject to (B.5), where σ21,1 is the variance of the estimation error for the initial value y1,1. The criterion

(B.9) is identical to (5.2) of section 5 apart from the first term. Therefore, the “smoothed” estimator for

{yt,m} based on the state-space formulation differs from the estimated interpolands of the main text only

in terms of initialisation assumptions.
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