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Abstract

Qualitative survey data are used widely to provide indicators of economic ac-
tivity ahead of the publication of official data. Traditional indicators exploit only
aggregate survey information, namely the proportions of respondents who report
“up” and “down”. This paper considers disaggregate or firm-level survey responses.
It derives alternative disaggregate indicators of economic activity relating firms’
categorical responses to official data using ordered discrete-choice models. An ap-
plication to firm-level survey data from the Confederation of British Industry shows
that the disaggregate indicators of manufacturing output growth provide more ac-
curate early estimates of manufacturing output growth than traditional aggregate
indicators.
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1 Introduction

Statisticians and economists are under considerable pressure to produce up-to-date esti-
mates of the state of the economy. With interest rates now being set to regular timetables
in all major countries, interest rate setters have a regular need for up-to-date information.
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Moreover, those working in financial institutions who want to anticipate the actions of
interest rate setters also require efficient means of estimating the state of the economy.

In recent years, building on the paper by Stone (1947), a number of authors have
developed methods of relating the state of the economy to an unobserved latent variable,
the most important factor in a static [see Stock and Watson, 2002] or dynamic [see Forni
et al., 2001] factor representation of a large array of economic data. These methods
can be used in real-time to provide estimates of the state of the economy, even if some
data accrue only with a lag. Nevertheless, this approach suffers from the considerable
disadvantage that the relationship between the latent variable and GDP at real prices,
the conventional and well-understood measure of economic activity, is by no means clear.
Thus other authors [see Mitchell et al., 2004] produce monthly estimates of GDP itself in
a manner designed always to be aligned against the most recent official quarterly data.

Whichever approach is adopted, it is sensible to make whatever use can be made of
data as they accrue. Collection and publication of official data is subject to processing
delays; thus in the United Kingdom the monthly index of industrial production (including
manufacturing output) is published about thirty seven days after the end of the month
to which it relates. EUROSTAT legislation imposes a maximum delay of forty five days.
Qualitative surveys about the state of the industrial sector, are, however, published with
a much shorter lag and their publication is usually accompanied by some discussion of
what can be learned from them about the most recent movements and short-term expected
future movements in economic activity, at least in the sector to which the surveys relate;
see Mourougane and Roma (2002). These surveys ask inter alia whether, after adjusting
for normal seasonal movements, output has risen, stayed the same or fallen in recent
months. The question thus arises how formally to convert the findings of such surveys
into early estimates of movements in economic activity. The traditional approach to this
question has been to take the aggregate findings of such surveys, the proportion of firms
reporting that output has risen, stayed the same or fallen, and relate them to official
output data. Approaches suggested have included the probability method [Carlson and
Parkin, 1975], the regression method [Pesaran, 1984] and the reverse regression method
[Cunningham et al., 1998]. For an example of an application using Carlson and Parkin’s
approach, see Lee (1994). The regression approach is used, for example, by the Bank of
England [see Britton et al., 1999]. Smith and McAleer (1995) and Appendix A below
compare these approaches. The inclusion of the reported proportions in the factor models
mentioned above can also be seen as a means of relating the aggregate survey data to
other economic variables.

In this paper we are concerned with a question which arises with any survey but
which has been little discussed in the context of surveys of business activity. How should
the responses of the individual firms be combined if the aim of the survey is to produce
an early indication of official output data? There is no reason to believe that working
with the aggregate findings of the survey is the best way of doing this; it may well be
that quantification in a manner which allows for a degree of heterogeneity among firms
exploits the information more efficiently than do the traditional approaches and therefore
allows more accurate inferences to be drawn about output movements. We construct
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a “disaggregate” indicator built round ordered discrete choice models linking individual
firms’ categorical responses to official data. Then, given the categorical responses, we infer
the most likely values for the official data. In contrast to Kaiser and Spitz (2000), who
use a “pooled” ordered discrete choice model, our approach does not impose homogeneity
among firms, an assumption we reject below. An alternative “semi-disaggregate” indicator
based on grouping the firms according to their responses both at time t and t − 1 is
proposed in Mitchell et al. (2002a). We illustrate the use of the disaggregate indicators
in an application to industrial survey data from the Confederation of British Industry.
We find our disaggregate indicators of manufacturing output growth explain more of the
variation in the outturn for output growth than traditional indicators constructed using
“aggregate” data. They also offer more accurate estimates on an out-of-sample basis.

The plan of this paper is as follows. Section 2 motivates the disaggregate indicator.
Section 3 considers an application, and section 4 makes some concluding comments.

2 Firm-Level Quantification

2.1 Ordered Discrete Choice Models

Consider a survey that asks a sample of Nt manufacturing firms at time t whether their
output growth, for example, has risen, not changed or fallen relative to the previous
period. Crucially the number of firms in the sample is allowed to vary across t.

The categorical responses in the survey are assumed to be related to economy-wide
manufacturing output growth xt in the following manner. Let the actual output growth
of firm i at time t, yit, (i = 1, ..., Nt), depend on xt according to the linear model

yit = αi + βixt + εit, (1)

(t = 1, ..., T ), where αi and βi are firm-specific time-invariant coefficients. The error term
εit captures the component of firm-specific output growth yit unanticipated by both firm
i and the econometrician at time t. More precisely, we assume the conditional linear
specification E(yit|Ωi

t) = αi + βixt where Ωi
t comprises information available to firm i at

time t and includes xt. Hence, E(εit|Ωi
t) = 0 and εit is uncorrelated with xt rendering

xt weakly exogenous by assumption. The validation of this and other assumptions, for
example, the absence of dynamics in xt, is a necessary concomitant in any empirical
application. Indeed the model (1) can be straightforwardly augmented to accommodate
the endogeneity of and dynamic dependence on xt. See section 2.2 below which also
describes the diagnostic tests to be employed. In the following analysis it is further
assumed that output growth xt is stationary. A fixed-effects interpretation for (1) is
provided by (A.21) in Appendix A.3.

It is necessary that model (1) for firm-level growth yit is coherent with the economy-
wide outturn xt. Let zit denote (the level of) output of firm i at time t. From (1),
after cross-multiplication and summation over i = 1, ..., Nt,

∑Nt

i=1 ∆zit =
∑Nt

i=1 zit−1αi +∑Nt

i=1 zit−1βixt +
∑Nt

i=1 zit−1εit, where ∆ is the first difference operator. For coherency
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we therefore require that
∑Nt

i=1 ∆zit/
∑Nt

i=1 zit−1
p→ xt,

∑Nt

i=1 zit−1αi/
∑Nt

i=1 zit−1
p→ 0,∑Nt

i=1 zit−1βi/
∑Nt

i=1 zit−1
p→ 1 and

∑Nt

i=1 zit−1εit/
∑Nt

i=1 zit−1
p→ 0 (Nt →∞).

Actual growth yit of firm i at time t is unobserved but the survey contains data
corresponding to whether output growth has risen, not changed or fallen relative to the
previous period. To account for the ordinal nature of the responses, we use ordered discrete
choice models [see Amemiya 1985, Ch.9] based on the latent regression (1). Define the
indicator variables

yj
it = 1 if µ(j−1)i < yit ≤ µji and 0 otherwise, (j = 1, 2, 3), (2)

corresponding to “down”, “same” and “up”, respectively, where µ0i = −∞, µ1i, µ2i and
µ3i = ∞ are firm-specific threshold parameters. We assume that the error terms εit,
(t = 1, ..., T ), are logistic with common cumulative distribution function (c.d.f.) F (z) =
[1+exp(−z)]−1, −∞ < z < ∞, (i = 1, ..., Nt). The logistic distribution is similar in shape
to the normal but has slightly heavier tails and is particularly convenient since it offers
a closed form distribution function. The probabilistic foundation for the observation rule
(2) is given by the conditional probability Pjit = Pi(j|xt, i) of observing the categorical
response yj

it = 1 for choice j at time t given the value of xt and firm i

Pjit = F (µji − αi − βixt)−F (µ(j−1)i − αi − βixt), (j = 1, 2, 3). (3)

As discrete choice models are only identified up to scale; including the intercept αi in
(1) necessitates setting, for example, the first threshold parameter µ1i to zero to achieve
identification. Consequently the decision probabilities (3) are invariant to multiplying
(1) by an arbitrary constant. Assuming the errors εit are independently and identically
distributed over time, the likelihood function for firm i is

Li =
∏T

t=1
P

y1
it

1it P
y2

it
2it P

y3
it

3it . (4)

Under the above assumptions, maximisation of (4) yields consistent estimates (T → ∞)
of αi, βi and µji denoted by α̂i, β̂i and µ̂ji respectively.

2.2 Specification Tests

It is important to test the implied restrictions embodied in (1), particularly given that
macroeconomic data are widely accepted to exhibit dependence. Model (1) may be viewed
as a restricted form of a more general formulation that allows for both endogeneity of and
dynamic dependence in the official data xt.

This generalization consists of (1) augmented by a stationary autoregressive process
governing the determination of output growth xt. Let xt follow the first order autoregres-
sive process

xt = αx + βxxt−1 + ut, (5)

(t = 1, ..., T ), where |βx| < 1 and ut is an i.i.d. zero mean disturbance. Additional lagged
terms in xt may be included in (5) if xt is generated by a higher order autoregressive
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process. We assume that conditional on ut the dependence between εit and ut takes the
linear form

εit = ρiut + ξit, (6)

where ρi is a firm-specific parameter and ξit is an i.i.d. disturbance distributed as logistic
and independently of ut, (i = 1, ..., Nt).

Substitution of (6) in (1) generates the conditional dynamic model

yit = αi + βixt + ρiut + ξit (7)

= α∗i + β∗i0xt + β∗i1xt−1 + ξit,

(i = 1, ..., Nt), where the firm-specific coefficients α∗i = αi − ρiαx, β∗i0 = βi − ρi and
β∗i1 = −ρiβx. A test of ρi = 0, (i = 1, ..., Nt), or the exclusion of the error term ut in (7)
jointly tests for the absence of dynamics and the weak exogeneity of xt in (1). A simple
two-step test of ρi = 0 may be formulated similarly to the procedures described in Smith
and Blundell (1986) and Newey (1987). Firstly, (5) is estimated by least squares which
yields the consistent estimates (T → ∞), α̂x and β̂x, for αx and βx, and the residual
ût = xt − α̂x − β̂xxt−1, (t = 1, ..., T ). Secondly, the augmented model (7) is estimated by
ordered logit as in section 2.1 after substitution of ût for ut. Finally, the hypothesis ρi = 0
may be assessed by a t-test based on the resultant estimate of ρi. Failure to reject ρi = 0
supports the use of (1) while its rejection implies that the official data should be inferred
using the augmented conditional model (7); see section 2.3 below. To mitigate the effects
of an inflated Type I error when testing ρi = 0 across i, (i = 1, ..., Nt), Bonferroni adjusted
critical values are used.

Other implicit assumptions in (1) include linearity, homoskedasticity and that εit is
distributed as logistic. Additional score or Lagrange Multiplier tests of misspecification
appropriate for the ordered logit model should be employed to ascertain the empirical
validity of (1); see, for example, Chesher and Irish (1987), Machin and Stewart (1990)
and Murphy (1996).

While it is important if undertaking structural inference to ensure the model ade-
quately explains the data, it is well known that there is little reason to expect a good
in-sample fit to translate into good forecasts. We therefore undertake simulated out-of-
sample experiments to assess the forecasting performance of the selected models against
benchmark forecasts in section 3.3.

2.3 Inferring the Official Data

Given an ordered logit model for each firm i, an estimator for xt may be inferred from the
survey data. As survey data are usually published ahead of the official data, this provides
an early quantitative estimate of xt. Since they are not subject to revision they must be
assessed against near-final official data.

Let jit, (jit = 1, 2, 3), denote the survey response of firm i at time t, where 1, 2 and
3 correspond to “down”, “same” and “up”, respectively. Our initial interest centres on
the conditional density f(xt|j, i) for observing xt given the survey response j for firm i.
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Let f(xt) denote the time-invariant density function of xt. Therefore, the conditional
probability of observing response j for firm i is P (j|i) =

∫∞
−∞ P (j|xt, i)f(xt)dxt. Bayes’

Theorem states that

f(xt|j, i) =
P (j|xt, i)f(xt)

P (j|i)
. (8)

For firm i, the Bayes estimator (under squared error loss) for xt given j is the mean of
the posterior density f(xt|j, i):

E(xt|j, i) =

∫ ∞

−∞
xtf(xt|j, i)dxt, (9)

which takes one of three values depending on the observed sample response jit of firm i at
time t. Given f(xt), all of the above integrals may be calculated by numerical evaluation.

Estimators P̂ (j|xt, i) for P (j|xt, i) and, thus, P̂ (j|i) for P (j|i) are given by substitution
of the estimators α̂i, β̂i and µ̂ji, (j = 0, ..., 3), in (3). Hence, a feasible Bayes estimator

Ê(xt|j, i) may be obtained from (9) by numerical evaluation.
To create a disaggregate indicator Dt of economic activity at time t, from the law of

iterated expectations the conditional expectation of xt given all firms’ survey responses
jit, (i = 1, ..., Nt),

E(xt|{jit}Nt
i=1) =

∑Nt

i=1
HitE(xt|jit, i), (10)

where Hit is the exogenous sample probability of observing firm i at time t. Hence,
assuming firms are independent, we define the parametric indicator

Dt =
∑Nt

i=1
witÊ(xt|jit, i), (11)

where wit > 0 is the weight given to firm i at time t and
∑Nt

i=1 wit = 1. If firms constitute
a random sample, then equal weights are appropriate since all firms are equally likely in
the sample. However, if firms are drawn according to some stratified sampling process,
then the weights wit should reflect stratum weights; for example, if strata are defined by
firm size, then firms should be size-weighted.

An alternative non-parametric disaggregate indicator NDt for the conditional expec-
tation E(xt|{jit}Nt

i=1) which avoids the assumption of a parametric structure for f(xt|j, i)
via (8) may be based on the conditional empirical distribution function. Define the
indicator function 1(xt ≤ x, jit = j|i) = 1 if xt ≤ x and jit = j and 0 otherwise,
(j = 1, 2, 3). Let T j

i =
∑T

s=1 yj
is which is the number of times firm i gives response

j in the survey; hence, T j
i /T is the sample proportion of responses j for firm i, (j =

1, 2, 3). The conditional empirical distribution function of xt given reponse j for firm
i is given by F̂ (x|j, i) =

∑T
t=1 1(xt ≤ x, jit = j|i)/T j

i , (j = 1, 2, 3), which assigns

equal weight to each sample value. As T → ∞ and, thus, T j
i → ∞, T j

i /T
p→ P (j|i)

and
∑T

t=1 1(xt ≤ x, jit = j|i)/T p→ F (x, j|i) if, given firm i, xt and jit may be re-
garded as stationary random variables with joint conditional c.d.f. F (x, j|i). Hence,

F̂ (x|j, i) p→ F (x|j, i) = F (x, j|i)/P (j|i), the conditional c.d.f. of xt given response j
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and firm i. Therefore, the mean of F̂ (x|j, i),
∑T

s=1 yj
isxs/T

j
i , is a consistent estimator for

E(xt|j, i). A nonparametric disaggregate (NDt) indicator, a discrete version of (11), is
therefore defined as

NDt =
∑Nt

i=1
wit

T∑
s=1

yjit

is xs/T
jit

i . (12)

3 An Application: CBI Survey Data

The Industrial Trends Survey (ITS) of the Confederation of British Industry (CBI), which
is conducted on a quarterly basis, gives qualitative opinion from UK manufacturing firms
on past and expected trends in output, exports, prices, costs, investment intentions,
business confidence and capacity utilisation. In our application we consider the following
question:

• “Excluding seasonal variations, what has been the trend over the past four months
with regard to volume of output?”.

Firms can respond either “up”, “same”, “down” or “not applicable”. This retrospec-
tive question provides the basis of deriving timely indicators of manufacturing output
growth xt. The number that answer “not applicable” is very small and ignored in later
analysis. Although there is a one month overlap on each survey as firms are asked to
report over a four month period four times a year, as the responses are qualitative this
aspect of the data is viewed as unlikely to be important.

We consider a sample of 43, 936 responses from the ITS. The sample records the
survey responses of, in total, 5002 firms over the period 1988q3 to 1997q3 (37 quarters).
There are, on average, only 1183 firms in the sample at time t, with 8.7 time-series
observations per firm. Many observations are missing as firms do not always respond
to consecutive surveys. This prevents the construction of a panel data set with sufficient
time-series observations across all firms for the estimation of (1) without assuming some
homogeneity in behaviour across firms. Firm-level quantification requires sufficient time-
series observations for a given firm for reliable parameter estimation. Given the static
specification (1), however, observations need not be consecutive.

In the absence of rules guiding the choice of how many time-series observations are
necessary, we accordingly take an eclectic approach and consider a range of values for the
minimum number of observations for the inclusion of a particular firm when examining
the performance of the disaggregate indicators. In the parametric approach we consider
a range from 7 to 37 observations as estimation is unreliable if not infeasible for less than
7 observations. For the purposes of illustration, since consistency of the estimators for
αi, βi and µji in the firm-level models is predicated on T →∞, rather than examination
of the performance of the parametric disaggregate indicator irrespective of its theoretical
properties, when subjecting the firm-level models to specification and hypothesis tests,
we focus on those 643 firms that reply to at least 20 surveys. Although this choice is
arbitrary, similar results were obtained for other values although the power of these tests
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should be expected to decline as fewer observations are considered per firm. For the
nonparametric approach the observational range 1 to 37 is considered.

Exclusion of firms that do not respond to at least a given number of surveys may
induce a selection bias in the disaggregate indicators. The resultant “included sample”
obtained after dropping firms with less than a given number of time-series observations
may no longer be considered as a random sample; firms may fail to respond to surveys
for self-selection reasons. Consequently, inference may be biased; no bias results only
if firms omitted from the included sample, the “excluded sample”, may be regarded as
missing at random or ignorable [see Griliches, 1986]. In particular, indicators or statistics
derived from both included and excluded samples should not differ significantly. To test
for the possibility of selection bias we tested the correlation of three traditional aggregate
indicators, reviewed in Appendix A, with the outturn for output growth. In all cases,
there was no evidence of a statistically significant difference between the performance of
these aggregate indicators in the included and excluded samples; for further details, see
Mitchell et al. (2002b). This result is consistent with the view that the included sample
may be regarded as a random sample, and that inference from it should be unbiased.
Therefore if disaggregate indicators outperform traditional aggregate indicators we can
conclude that this improvement is due to disaggregation per se, and is not a consequence
of sample selection. We also used forecast encompassing tests to examine whether the
aggregate indicators derived from excluded firms add information vis-à-vis the disaggre-
gate indicators. Again, there was little evidence to suggest that dropping firms led to any
informational loss.

An alternative approach, that does not require some firms to be removed, is a ran-
dom effects reformulation of (1) which imposes homogeneity restrictions across firms; see
Hsiao (2003). Re-express (1) as yit = α + βxt + ζ it, where ζ it = (αi−α) + (βi− β)xt + εit

and E(αi) = α, E(βi) = β. Random effects estimation requires the evaluation of T -
dimensional integrals which may be achieved by the use of the Geweke-Hajivassiliou-
Keane simulator; see, for example, Keane (1994). In general, however, E(αi|Ωt) 6= α,
E(βi|Ωt) 6= β where Ωt comprises information available to all firms at time t and includes
xt. That is, the fixed effects αi and βi are correlated with the outturn xt, rendering
traditional random effects panel-data estimators inconsistent through the presence of het-
erogeneity bias. Since our results indicate considerable heterogeneity across firms in the
slope coefficients, we do not follow this approach here.

To give an impression of the nature of the survey responses, Figure 1 plots the per-
centage of the 643 firms that reported an “up”, “same” or “down” response over the
data period. It also plots the quarterly growth at an annual rate of (seasonally adjusted)
manufacturing output. Visual inspection of the graph suggests that the survey responses
track movements in manufacturing output growth at least in the sense that there appears
to be more pessimism during recessions and more optimism in expansionary periods.
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Figure 1: Unweighted percentage of firms reporting “up”, “same” or “down”

3.1 Disaggregate indicators

3.1.1 The Density Function f(.)

The parametric disaggregate indicator Dt for manufacturing output growth xt requires
a time-invariant density function for xt, f(.), to be specified; see (8). The assumption
that xt is stationary is supported by tests for a unit root in the level series of manufac-
turing output. The sample observations for xt have sample mean and sample standard
deviation equal to 1.023 and 4.057 respectively. The sample exhibits little skewness,√

b1 = m3/m
3/2
2 = 0.046, where mi is the i-th sample central moment, but there is some

evidence of kurtosis, b2 = m4/m
2
2 = 3.571, indicating that f(.) may have thicker tails

than the normal distribution. A modified version of the Jarque-Bera test that is robust
against serial correlation and conditional heteroscedasticity in xt [see Bai and Ng, 2003]
does not reject the normality of f(.) with a p-value of 0.790. Specifically the Bai-Ng test
for normality employs a long run covariance matrix estimate obtained using the kernel
method with prewhitening suggested by Andrews and Monahan (1992). Results were ro-
bust to using alternative estimators of the long run covariance matrix, such as the method
of den Haan and Levin (2000) that uses a data-dependent prewhitening procedure. We
also experimented with the Pearson family of density functions, but the performance of
the disaggregate indicator was not affected; see Mitchell et al. (2002b) for further details.
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3.1.2 Firm-Level Estimation of the Relationship Between Survey Responses
and Manufacturing Output Growth

The parametric disaggregate indicator Dt is based on firm-level estimation. To gain an
impression of what the firm-level estimates look like, the degree of heterogeneity across
firms and the empirical support for the chosen specification, for illustrative purposes we
focus on those 643 manufacturing firms that over the period 1988q3− 1997q3 reply to at
least twenty surveys.

We estimated ordered logit models for each of the 643 firms. A Wald test (fixed Nt)
rejected the null hypothesis βi = β for all i with a p-value of 0.00. Firms, thus, appear
to be heterogenous in terms of how they react to changes in the aggregate environment.
Table 1 gives an impression of this heterogeneity. It displays the number of firms that
have t-ratios for testing βi = 0 in a specified range; firms are sorted by size as measured
by sales volumes.

Table 1: t-ratios for β̂: the number of firms in a specified range with firms sorted by firm
size

Firm Size t-ratio (ti)
Quintile ti ≤ −2 −2 < ti ≤ −1 −1 < ti ≤ 0 0 < ti ≤ 1 1 < ti ≤ 2 ti > 2

small 1 1 9 14 44 41 19
↓ 2 0 5 20 32 42 29

3 2 4 22 30 37 33
↓ 4 1 6 28 45 33 25

big 5 0 8 17 37 36 33

Table 1 reveals the considerable variation across firms in how their survey responses
relate to manufacturing output growth. There is no transparent relationship between
firm size and the t-statistic ti, and, thus, the ordered logit estimator β̂i. It is noteworthy
that the survey responses of only 4 of the 643 firms individually have a significantly
negative relationship with xt with 139 significantly positive based on a one-sided test at
the 0.025 level. This is consistent with our prior that, in general, we should expect a
rise in manufacturing output growth to be associated with a rise in reported firm-specific
output. However, as Table 1 suggests, the joint hypothesis of no positive relationship
could not be rejected using a Bonferroni test (fixed Nt) based on these t-statistics.

The firm-level logit models were also subjected to the specification tests described in
section 2.2. Both the test of ρi = 0, (i = 1, ..., Nt), and a score test for misspecification are
considered. This latter test is a joint test for omitted variables (specifically xt−1 and pow-

ers of β̂ixt to test for incorrect functional form), neglected conditional heteroskedasticity
and asymmetry in the distribution of the error terms εit; see Murphy (1996). Results are
presented using Bonferroni-corrected critical values. Table 2 reports the proportion of
times, across the 643 firms, these tests did not reject. The results are supportive of the

[10]



chosen specification (1) for the firm-level model.

Table 2: Specification tests for ordered discrete choice models. Propor-
tion of times the specification tests were not rejected

ρi = 0 1.000
Score 0.964

3.1.3 Comparing the Performance of the Aggregate and Disaggregate Indi-
cators

We compare the performance of the disaggregate indicators against that of three tra-
ditional quantification techniques employed on aggregate proportions: the probability
method of Carlson and Parkin (1975) [CP], the regression approach of Pesaran (1984) [P]
and the reverse-regression approach of Cunningham et al. (1998) [CSW] based on the
logistic distribution. See Appendix A for a review.

The CP aggregate indicator is identified up to a scaling parameter [see Appendix
A]. Following CP we chose this parameter to ensure that the mean of the indicator is
equal to the mean of the outturn over the sample-period. This does not imply that the
indicator is unbiased in the statistical sense. In contrast, the regression and reverse-
regression indicators are unbiased since they implicitly estimate the scaling parameter
through regression-based methods. Note that the scale of the disaggregate indicators is
identified directly by xt, in the parametric case through the form taken by f(xt) in (8).

To evaluate fairly the performance of the alternative aggregate (and disaggregate)
indicators, mean squared error (MSE) criteria are inappropriate as MSE depends on
scale. We therefore summarise the performance of indicators of manufacturing output
growth by examining their estimated correlation coefficients (corr.) with the outturn for
manufacturing output growth. Correlation informs us about the informational content
of the indicator series, a high value indicating that a strong signal about the outturn
may be recovered from the indicator regardless of how the indicator has been scaled, and
whether MSE is high or low. We considered both unweighted and weighted aggregate
and disaggregate indicators; the weights, based on firms’ sales volumes, are those used
by the CBI in aggregating firms’ responses. Weighting the proportions in the aggregate
case, or the firm-level quantified series in the disaggregate case, unambiguously leads to
worse indicators. However, this may not be true for all possible weighting schemes. We
focus here on the unweighted estimates, but do present some representative results for
the weighted estimates.

Figure 2 plots the correlation of the disaggregate indicators against manufacturing
output growth as a function of the minimum number of observations considered per firm.
It also shows how many firms are in a given sample. Only 22 firms reply to all 37 sur-
veys. Regardless of how many observations per firm are considered, while both aggregate
and disaggregate indicators are positively correlated with manufacturing output growth,
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the disaggregate indicators provide more accurate early estimates of output growth than
traditional aggregate indicators. Also, the nonparametric disaggregate indicator NDt ap-
pears to be better than its parametric counterpart Dt. An assessment of the performance
of the aggregate and disaggregate indicators on a sectoral basis was also made. Grouping
firms into seven industrial sectors based on their 1980 Standard Industrial Classification
(SIC) code, we found that: the disaggregate indicators always explain more variation
in sectoral output growth than the aggregate indicators; the nonparametric disaggregate
indicator is always superior to the parametric disaggregate indicator; the sectoral indica-
tors do not explain as much of the variation in the outturn as the indicators for (overall)
manufacturing output examined above reflecting increased volatility at the sectoral level.
See Mitchell et al. (2002b) for further details.

Figure 2 also shows that the correlation of the disaggregate indicators with the outturn
declines as more observations per firm are considered. The fewer firms are dropped the
better the fit of the disaggregate indicator. This is, at least in part, a consequence of
over-fitting. A simple example illustrates this. If there are just T firms in the sample and
they each reply once but at different points in time, then the nonparametric disaggregate
indicator will fit the official data perfectly. Given this danger, it is therefore important to
consider the behaviour of the indicators on an out-of-sample basis; see section 3.3.

We found that despite the sample mean of the disaggregate indicators approximately
estimating that of the outcomes xt correctly, all the disaggregate indicators appear too
smooth; for an example focussing on the behaviour of the disaggregate indicators with
20 observations see Table 3. For comparative purposes Table 3 also presents results for
the aggregate indicators and examines the performance of the weighted estimates. Table
3 shows that the disaggregate indicators display too little volatility as compared with
the outturn. This feature has been observed elsewhere for alternative indicators [see, for
example, Cunningham (1997)]. Less volatility is observed because the scale is incorrect.
An explanation for this finding arises from consideration of those firms whose responses
are poorly correlated with actual output growth. In the extreme case where responses
are uncorrelated with output, inclusion of these firms reduces the standard deviation
of the indicator but does not affect its correlation with output growth. This follows
from the fact that in a large time-series, if a firm responds at random the disaggregate
method gives the same score (mean output growth) to all categorical responses; i.e. since
P (j|xt, i) = P (j|i), E(xt|j, i) = m′

1, where m′
1 is the sample mean of {xt}; see (9).

For random firms the contribution to the aggregate therefore has no variance. Excess
smoothness of the disaggregate indicators may thus be viewed as due to the presence of
firms in the sample whose responses contain little or no signal about output growth. To
reconcile this incompatibility in volatilities, note that the outturn is the signal recovered
from the survey data plus a residual error component. We therefore re-scale the indicators
through regression on the outturn as a simple method of obtaining an indicator which
tracks output growth more closely. The effects of this regression are taken into account
in our subsequent out-of-sample analysis. An alternative approach might be to identify
those firms whose responses contained little or no signal and then to exclude these firms,
or give them a lower weight, when defining the disaggregate indicator.
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Figure 2: In-sample performance of the aggregate and disaggregate indicators. Correlation
of the indicators against manufacturing output growth as a function of the minimum
number of observations considered per firm

3.2 A Graphical Representation of the Disaggregate and Aggre-
gate Indicators

To illustrate the superiority of disaggregate over aggregate indicators we consider the most
informative aggregate and disaggregate indicators, that is, the unweighted P aggregate
indicator and the unweighted re-scaled nonparametric disaggregate indicator NDt. Figure
3 plots these two indicators together with the outturn for manufacturing output growth.

Figure 3 indicates that the disaggregate indicator picks up the dip of 1994 much
better than the aggregate indicator. Furthermore, despite the poorer performance of
both indicators in the late 1990s the disaggregate indicator is again closer to the outturn.

3.3 Out-Of-Sample Analysis

Given the improved in-sample fit between the survey responses and official data using
disaggregate rather than aggregate indicators, we examine whether the superiority of
the disaggregate indicators extends out-of-sample. To evaluate how accurate survey-
based early estimates of output growth would have been out-of-sample an experiment
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Table 3: Aggregate and Disaggregate Indicator Performance

Mean Stand. Dev. Corr.
Outturn for Manuf. Output Growth 1.023 4.057
CP unweighted 1.023 175.748 0.696

weighted 1.023 88.501 0.648
P unweighted 1.023 2.978 0.734

weighted 1.023 2.752 0.678
CSW unweighted 1.023 5.574 0.728

weighted 1.023 6.244 0.650
Dt unweighted 1.031 0.427 0.851

weighted 1.054 0.481 0.810
NDt unweighted 1.009 0.640 0.923

weighted 1.008 0.685 0.905

designed to mimic “real-time” application of the different quantification approaches is
undertaken. We are nevertheless assessing their performance against near-final rather
than initial official data.

The out-of-sample analysis is conducted over the 8 periods, 1997q4− 1999q3. Unfor-
tunately it was not possible to extend the out-of-sample analysis beyond 1999 since in
1999q4 the CBI moved to a new survey processing platform that involved changing the
participant identification numbers that meant it became very difficult to match firms pre-
and post-December 1999. Results presented below for the disaggregate indicators focus
on those firms who had given at least one survey response during the in-sample period
ending in 1997q3. Similar results were obtained when “new” firms were allowed to enter
the sample during the out-of-sample period.

The out-of-sample analysis involves computing the aggregate and disaggregate indi-
cators using both survey and official data from 1988q3 to 1997q3, as outlined above, and
then using these in-sample estimates to infer output growth in 1997q4 given knowledge of
the survey data in 1997q4, but crucially not the official data on output growth. Given that
survey data are published ahead of official data this provides an early estimate of output
growth. Data from 1988q3 to 1997q4 are then used along with survey data in 1998q1
to infer output growth in 1998q1. This recursive process is repeated until finally output
growth in 1999q3 is inferred using survey and official data 1988q3 − 1999q2, plus survey
data in 1999q3. Both aggregate and disaggregate out-of-sample estimates are re-scaled by
recursively regressing their in-sample counterparts against the outturn for output growth.
In this way no ex post information about output growth is used when quantifying the
survey data in real-time. As is standard when evaluating forecasts, the performance of
the indicators is evaluated in terms of their root MSE against the outturn.

The results of this recursive exercise are summarised in Figure 4. Figure 4 plots
the root MSE of the aggregate (computed using the full sample) and the disaggregate
indicators, both unweighted, against the outturn for manufacturing output growth. The
performance of the disaggregate indicators is evaluated as a function of the minimum
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Figure 3: Explanatory power of disaggregate and aggregate indicators

number of observations considered per firm.
Firstly, both the parametric and nonparametric disaggregate indicators produce more

accurate forecasts than the aggregate indicators. Moreover, there is evidence to sug-
gest that these improvements are statistically significant using small sample corrected
Diebold-Mariano tests; see Harvey et al. (1997). This finding is encouraging and further
motivates the use of disaggregate survey-based indicators. Secondly, the performance of
the parametric (nonparametric) disaggregate indicator is best when 25 (7) observations
are considered per firm. However, out-of-sample analysis, particularly with small samples,
is always sensitive to the sample period chosen. This is particularly so in this application
where output growth is far less volatile in the out-of-sample than in-sample period; output
growth has a standard deviation of 4.1% for the period 1988q3−1997q3 as compared with
2.6% for 1997q4−1999q3. Experimentation with a 16 rather than 8 quarter out-of-sample
period did, however, deliver similar results.

4 Concluding Comments

Using a panel of firm level survey responses obtained from the CBI disaggregate indica-
tors for output growth are derived using ordered discrete choice models relating firms’
categorical survey responses to a quantitative measure of economic activity. Considerable
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Figure 4: Out-of-sample performance of the aggregate and disaggregate indicators. Root
MSE of the indicators against manufacturing output growth as a function of the minimum
number of observations considered per firm

heterogeneity across firms is present concerning how their responses relate to the measure
of economic activity. The disaggregate indicators outperformed traditional aggregate in-
dicators in terms of anticipating movements in both manufacturing output growth (and
sectoral output growth) and both in-sample and out-of-sample.
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Appendix A: Aggregate Quantification Techniques:

A Review

Consider a survey that asks a sample of firms, for example, whether output growth xt

was “down”, “same” or “up” relative to the previous period. Since the proportion of
respondents who replied “down”, “same” or “up” sum to unity the survey contains two
pieces of independent information at time t. Let Ut and Dt denote the proportion of firms
that reported an output rise and fall.

Although quantification of categorical survey responses is to some extent arbitrary,
since survey responses are a firm’s subjective assessment of the expected or actual be-
haviour of xt, at the aggregate level quantitative measures of the expected or observed
movement of xt can be derived given certain assumptions. In this appendix three alter-
native methods of quantification are reviewed:

• the probability approach of Carlson and Parkin (1975);

• the regression approach of Pesaran (1984, 1987);

• the reverse-regression approach of Cunningham et al. (1998) and Mitchell et al.
(2002a).

Although motivated in different ways, the three approaches are shown to share a
common foundation. Our discussion compares the latter two methods to the probability
approach and draws on Pesaran (1987) and Mitchell et al. (2002a). For alternative reviews
and extensions of the probability and regression approaches, see Wren-Lewis (1985) and
Smith and McAleer (1995).

A.1 The Probability Approach

This approach was first used by Theil (1952) to motivate the use of the “balance statistic”
Ut−Dt [see Anderson (1952)] as a method of quantification. The balance statistic, up to a
scalar factor, provides an accurate measure of average output growth xt if the percentage
change in output of firms reporting a fall and the percentage change for firms reporting a
rise are constant over time. The probability approach relaxes this restrictive assumption.

The probability method of quantification assumes that the response of firm i concern-
ing economy-wide manufacturing output growth xt is derived from a subjective probability
density function for xt, fi(.|i), which may differ in form across firms and is conditional on
information available to firm i at time t; the dependence of fi(.|i) on t is suppressed in
the discussion.

The responses of firm i are classified as follows. Let xit =
∫

xfi(x|i)dx denote the
mean of fi(.|i).

• “up” is observed if xit ≥ bit;

• “down” is observed if xit ≤ −ait;

[20]



• “same” is observed if −ait < xit < bit,

where the threshold parameters ait and bit are both positive.
Assume that firms are independent and that the structure of fi(.|i) is the same and

known for all firms; that is, fi(.|i) = f(.|i). Consequently, xit =
∫

xf(x|i)dx can be
regarded as an independent draw from an aggregate density f(x) =

∫
f(x|i)F (di), where

F (.) denotes the distribution function of firms i; the density f(.) is conditional on ag-
gregate information available to all firms at time t, the dependence on which is again
suppressed. Assume f(.) has mean xt.

Furthermore, if the response thresholds are symmetric and are fixed both across firms
i and time t, that is, ait = bit = λ, then

Dt
p→ P (xit ≤ −λ) = Ft(−λ), (A.1)

Ut
p→ P (xit ≥ λ) = 1− Ft(λ), (A.2)

where Ft(.) is the cumulative distribution function obtained from f(.) where, now, we
indicate explicitly the dependence on time t. Then, as xit is an unbiased predictor for xt,
we can estimate xt given a particular value for λ and a specific form for the aggregate
distribution function Ft(.).

A.1.1 Carlson and Parkin’s Method

The traditional approach of Carlson and Parkin (1975) assumes that f(.) is a normal
density function with mean xt and variance σt; alternative densities f(.) may be also
considered; see Batchelor (1981) and Mitchell (2002).

From (A.1) and (A.2), the estimator for xt is given as the solution to the equations

Dt = Φ(
−λ− x̂t

σ̂t

), (A.3)

1− Ut = Φ(
λ− x̂t

σ̂t

), (A.4)

where Φ(.) is the standard normal cumulative distribution function. Using (A.3) and
(A.4) to solve for x̂t and σ̂t,

σ̂t =
2λ

Φ−1(1− Ut)− Φ−1(Dt)
, (A.5)

where Φ−1(.) denotes the inverse standard normal cumulative distribution function. Thus,

x̂t = λ

(
Φ−1(1− Ut) + Φ−1(Dt)

Φ−1(1− Ut)− Φ−1(Dt)

)
, (A.6)

which leaves only λ undetermined. In the literature λ has been calculated in various ways.
Carlson and Parkin assume unbiasedness over the sample period, t = 1, ..., T ; that is, λ
is estimated as

λ̂ =
(∑T

t=1
xt

)
/
∑T

t=1

(
Φ−1(1− Ut) + Φ−1(Dt)

Φ−1(1− Ut)− Φ−1(Dt)

)
. (A.7)
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For alternative approaches, see inter alia Batchelor (1981, 1982), Pesaran (1984), and
Wren-Lewis (1985). Since λ is constant over time, its rôle is merely to scale x̂t.

A.2 The Regression Approach

Let aggregate output xt be a weighted average of firms’ output xit, (i = 1, ..., Nt),

xt =
∑Nt

i=1
wixit, (A.8)

where wi is the weight assigned to firm i. Assuming (A.8) holds for the sample of firms
under consideration, and categorising firms according to whether they reported an “up”
or a “down”, (A.8) can be rewritten as

xt =
∑Nt

i=1
w+

i x+
it +

∑Nt

i=1
w−

i x−it (A.9)

where x+
it is xit if firm i reports an “up” and 0 otherwise, likewise, x−it equals xit if firm

i reports a “down” and 0 otherwise and w+
i and w−

i the associated weights. The survey
does not provide exact quantitative information on x+

it and x−it . Following Anderson, if,
up to a mean zero disturbance ξit, x+

it = α and x−it = −β, α, β > 0, then

xt = α
∑Nt

i=1
w+

i − β
∑Nt

i=1
w−

i + ξt (A.10)

= αUt − βDt + ξt, (A.11)

where ξt =
∑Nt

i=1 wiξit and Ut and Dt are the (appropriately weighted) proportions of firms
that reported an output rise and fall respectively. The unknown parameters α and β can
be estimated via a linear (or non-linear) regression of xt on Ut and Dt. The fitted values
from this estimated regression then provide the quantified retrospective survey response
estimator for xt. To ensure the fitted values are unbiased estimates for xt, an intercept
is also included in the regression to allow for the possibility that ξt has a time-invariant
non-zero mean. For periods of rising and variable changes in xt, Pesaran extends this
basic model to allow for an asymmetric relationship between xt and xit.

A.2.1 Relating the Regression Approach to the Probability Approach

Suppose that xit is a random draw from a uniform density function f(.) with mean xt

and range 2q, q > 0; that is,

f(x) = (2q)−1 if xt − q ≤ x ≤ xt + q, (A.12)

= 0 otherwise,

with corresponding cumulative distribution function

Ft(x) = (2q)−1[x− (xt − q)] if xt − q ≤ x ≤ xt + q (A.13)

= 0 if x < xt − q

= 1 if x > xt + q.
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From (A.2) and (A.1),

Ut =
q + x̂t − λ

2q
, (A.14)

Dt =
q − x̂t − λ

2q
, (A.15)

An estimate of output growth xt may then be written as a function of the balance statistic;
viz.

x̂t = q(Ut −Dt), (A.16)

which provides an alternative justification for the use of the balance statistic.
A generalisation of (A.16) is obtained by relaxing the assumption that the “no change”

interval is symmetric; that is, replace (−λ, λ) by (−a, b). Hence, (A.14) and (A.15) become

Ut =
q + x̂t − b

2q
, (A.17)

Dt =
q − x̂t − a

2q
. (A.18)

Then the estimator for xt is
x̂t = αUt − βDt, (A.19)

which is equivalent to the estimator for xt in (A.11) based on Ut and Dt for the single
time period t, where the two scaling parameters are defined as

α =
2q(q − a)

2q − a− b
, β =

2q(q − b)

2q − a− b
. (A.20)

A.3 The Reverse-Regression Approach

Cunningham et al. (1998) and Mitchell et al. (2002a) relate survey responses to official
data by relating the proportions of firms reporting rises and falls to the official data.
Under the assumption that (after revisions) official data offer unbiased estimates of the
state of the economy this avoids biases caused by measurement error in the data.

Let the categorical survey response of firm i at time t be determined by the firm-specific
unobserved continuous random variable y∗it which is related to economy-wide manufactur-
ing output growth xt through the linear representation

yit = xt + ηit + εit. (A.21)

which may be expressed in terms of (1) by defining ηit = αi + (βi − 1)xt, (i = 1, ..., Nt,
t = 1, ..., T ). In (A.21), ηit is the difference between yit and xt anticipated by firm i while
εit is an unanticipated component, that is, E(yit|i) = xit = xt + ηit.

The retrospective survey data provide firm level categorical information on the individual-
specific random variable yit via the discrete random variable yj

it, j = 1, 2, 3, where

yj
it = 1 if cj−1 < yit ≤ cj and 0 otherwise, (A.22)
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where c0 = −∞ and c3 = ∞, j = 1, 2, 3 with the intervals (c0, c1), (c1, c2) and (c2, c3)
corresponding to “down”, “same” and “up” respectively. Note that the thresholds cj are
invariant with respect to firm i and time t. Defined in terms of the error terms in (A.21),
the observation rule (A.22) becomes

yj
it = 1 if cj−1 − xt < ηit + εit ≤ cj − xt and 0 otherwise. (A.23)

A probabilistic foundation may be given to the observation rule (A.23) by letting the
scaled error terms {σ(ηit + εit)}, σ > 0, possess a common and known cumulative distri-
bution function F (.), i = 1, ..., Nt, which is parameter free and assumed time-invariant.
Then,

P (yj
it = 1|xt) = F (µj − σxt)− F (µj−1 − σxt), (A.24)

where µj = σcj, j = 1, 2, 3.

A.3.1 Motivating the Regression Formulation

Let the survey proportion of firms that give response j at time t be denoted by P j
t =∑Nt

i=1 yj
it/Nt, j = 1, 2, 3. As Pjt = P (yj

it = 1|xt) = F (µj−σxt)−F (µj−1−σxt), E(P j
t |xt) =

Pjt. If we further assume that F (.) is symmetric, then P1t = F (µ1 − σxt) and P3t =
F (−(µ2 − σxt)). Hence, we may define the non-linear regressions

P 1
t = Dt = F (µ1 − σxt) + ξ1

t , (A.25)

P 3
t = Ut = F (−(µ2 − σxt)) + ξ3

t .

Assuming that the survey responses of firms are independent given xt,

N
1/2
t

(
ξ1

t

ξ3
t

)
d→

((
0
0

)
,

(
F 1

t (1− F 1
t ) −F 1

t F 3
t

−F 1
t F 3

t F 3
t (1− F 3

t )

))
, (A.26)

where F 1
t = F (µ1 − σxt) and F 3

t = F (−(µ2 − σxt)). Restricting attention to categories
j = 1 and j = 3 only results in no loss of information since

∑3
j=1 P j

t = 1.
If F (.) is strictly monotonic, the non-linear regressions (A.25) may be simplified by

taking Taylor series approximations to F−1(Dt) and F−1(Ut) about F (µ1 − σxt) and
F (−(µ2 − σxt)) respectively yielding the asymptotic (Nt →∞) linear regression models

F−1(Dt) = µ1 − σxt + u1
t , (A.27)

F−1(Ut) = −µ2 + σxt + u3
t ,

where

u1
t = (f 1

t )−1ξ1
t + op(Nt

−1), (A.28)

u3
t = (f 3

t )−1ξt,3 + op(Nt
−1),

and f 1
t = f(µ1 − σxt), f 3

t = f(−(µ2 − σxt)) and the density function f(z) = dF (z)/dz.
Since xt is observed, feasible and asymptotically efficient estimation of (A.27) is

achieved by generalised least squares (or minimum chi-squared) estimation given the
structure of the variance-covariance matrix of u1

t and u3
t .

[24]



A.3.2 Estimation of xt

Estimates of the official (economy-wide) macroeconomic data xt may be derived from the
estimated regressions. Consider the inverse regression model (A.27) and let

x̂1
t =

µ̂1 − F−1(Dt)

σ̂
, x̂3

t =
µ̂2 + F−1(Ut)

σ̂
. (A.29)

where µ̂1, µ̂2 and σ̂ denote the coefficient estimates. Both x̂1
t and x̂3

t are consistent
estimators of xt. A reconciled estimator for xt is obtained using the variance-covariance
matrix of x̂1

t and x̂3
t [see Cunningham et al. (1998) and Stone et al. (1942)]. Note that

when there is a poor statistical relationship between the survey proportions and xt, σ will
be small and the implied indicator becomes very volatile; see (A.29).

A.3.3 Relating the Reverse-Regression Approach to the Probability Ap-
proach

Let Ft(x) = F ((x − xt)/σt) with F (.) symmetric. From (A.1) and (A.2) with an asym-
metric interval for “same” (−a, b), cf. (A.3) and (A.4), equate

1− Ut = F (
b− x̂t

σ̂t

), (A.30)

Dt = F (
−a− x̂t

σ̂t

). (A.31)

From the symmetry of F (.),

Ut = F (
−b + x̂t

σ̂t

). (A.32)

Hence,

F−1(Ut) =
−b + x̂t

σ̂t

, (A.33)

F−1(Dt) =
−a− x̂t

σ̂t

. (A.34)

Therefore, in comparison with (A.27), µ1 = −a/σt, µ2 = b/σt and σ = 1/σt.

[25]
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