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I propose a general equilibrium model with endogenous defaults and a banking sector operating 

under a Value-at-Risk constraint. Analytical examination reveals that (a) the Value-at-Risk rule 

introduces a risk premium on bank lending, (b) this risk premium fluctuates with the business 

cycle, amplifying the impact of real shocks, and (c) bank leverage also fluctuates with real shocks, 

but its cyclical behaviour depends on the shocks’ effects on default expectations, credit demand, 

and the bank’s balance sheet. Assuming TFP shocks as the sole exogenous source of fluctuation, 

the model quantitatively replicates realistic fluctuations in banks’ leverage, equity, lending, and 

credit spreads. 
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I propose a general equilibrium model with endogenous defaults

and a banking sector operating under a Value-at-Risk constraint.

Analytical examination reveals that (a) the Value-at-Risk rule in-

troduces a risk premium on bank lending, (b) this risk premium

fluctuates with the business cycle, amplifying the impact of real

shocks, and (c) bank leverage also fluctuates with real shocks, but

its cyclical behaviour depends on the shocks’ effects on default ex-

pectations, credit demand, and the bank’s balance sheet. Assuming

TFP shocks as the sole exogenous source of fluctuation, the model

quantitatively replicates realistic fluctuations in banks’ leverage,

equity, lending, and credit spreads.
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I present a simple general equilibrium model with endogenous defaults in the

productive sector and a financial intermediation sector where leverage is con-

strained by a Value-at-Risk rule. The model is used to study the interaction

between the behaviour of financial intermediaries and the business cycle. In the

studied framework, unexpected adverse shocks to the real economy push default

rates higher. This affects financial intermediaries in two ways. First, higher-than-

expected default rates impair bank equity, thus affecting the ability of banks to

lend. Under a binding fixed leverage constraint, a relative loss in the bank’s equity

results in the same relative loss in credit supply. When the bank is subject to a
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Value-at-Risk constraint, higher default expectations can push the bank to reduce

leverage, leading to a larger drop in credit supply than what can be explained

by the erosion of bank equity. The compounded effects of lower bank equity and

lower leverage limits can dry up credit supply, thus pushing financing costs higher.

This is the procyclical Value-at-Risk argument already studied in the literature

(Adrian and Shin, 2010, 2014; Nuño and Thomas, 2017). In a departure from

existing literature, I show that another scenario is also possible. Following large

shocks to equity capital, the bank can use leverage to maintain credit supply at

a higher level than under a fixed leverage rule. In other words, leverage under a

Value-at-Risk rule can move to attenuate shocks (countercyclical leverage).

Financial intermediaries are assumed to fund loan issuance through a combina-

tion of deposits and more costly equity financing. The Value-at-Risk constraint

on the bank’s leverage combined with expensive equity financing introduces a

financing cost wedge from the perspective of the borrowing firm that cannot be

explained by credit losses alone. This wedge is interpreted as a risk premium cost

affecting borrowing in the productive sector. Fluctuations in the banking sector’s

equity and leverage lead to changes in risk premia. The model, thus, helps to

replicate another well-documented feature of credit markets, namely that most of

the credit spread fluctuation can be explained by changes to credit risk premia

(Gilchrist and Zakraǰsek, 2012).

The model’s endogenous default mechanism builds on the mechanism in Gourio

(2013) by assuming that firms finance capital accumulation using debt financing.

Unexpected idiosyncratic shocks to the firm’s ability to transform the economy’s

final good into capital make defaults possible in the steady state. Fluctuations

in total factor productivity (TFP) change the value of the capital accumulated

in the productive sector, thus causing fluctuations in default rates. A careful

specification of the technology used by firms to transform the economy’s final

good into capital generates rich default dynamics. Unexpected fluctuations in

default rates affect the performance of the representative bank’s loan portfolio

and therefore its equity. On the other hand, the generated default rate distri-

bution also displays some persistence. Persistence of default fluctuations means

that the bank’s evaluation of future default risk changes over time. The changes

to future default expectations interact with the bank’s Value-at-Risk constraint

generating fluctuations in credit risk premia. The model-implied distribution of

default rates is achieved by assuming some curvature in the capital production
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function and costly adjustment to the firm’s investment levels. Both these fea-

tures are absent in related works (Gourio, 2012, 2013; Nuño and Thomas, 2017).

The careful specification of capital production and the resulting rich default rates

dynamics enable the model to produce quantitatively reasonable fluctuations of

credit spreads, risk premia and leverage from TFP fluctuations as the sole source

of exogenous shocks. Unlike other macro-finance models replicating second mo-

ments of credit risk premia, the model can therefore do away with additional

exogenous sources of fluctuations such as shocks to capital quality, changes to

the riskiness of capital production or changes in the likelihood of extreme real

aggregate events.

Adrian and Shin (2014) show that, in the short term, banks react to adverse

shocks by reducing leverage while keeping equity relatively stable. To reproduce

the sticky behaviour of bank equity, I assume that the bank takes one period

to adjust its equity capital, by raising new equity or simply through retained

earnings. Following shocks that impair the value of the bank’s assets, the bank

cannot immediately adjust its equity. If it could, it would use the newly raised

equity capital to attenuate the effect of lower leverage, thus keeping the change

in credit supply minimal. The sticky equity assumption is therefore important to

generating realistic fluctuations in leverage and credit spreads.

A generic notion of Value-at-Risk (VaR) is introduced. Under the additional

weak assumption that VaR changes linearly with the size of the bank portfolio

(linear VaR), The Value-at-Risk constraint can be interpreted as an external

upper limit on the bank’s financial leverage. Under the linear VaR assumption, I

show analytically that the bank lending problem implies a risk premium beyond

what can be justified by default risk. The steady-state risk premium results from

the combination of expensive equity financing and the limit on bank leverage that

makes equity financing necessary to fund new loans. Dynamically, fluctuations in

risk premia result from the VaR rule constraining more or less bank lending. A

trivial example of a linear VaR measure assumes that VaR is a constant fraction

of the portfolio size. Under this rule, bank leverage is constant (acyclical). More

generally, the cyclical behaviour of leverage depends on the nature of the Value-

at-Risk rule adopted by the bank.

In this paper, I focus on a VaR measure called ”economic capital” Value-at-

Risk. The economic capital Value-at-Risk (VaR) is aimed at protecting the bank’s

solvency from a large aggregate shock that affects the value of the bank’s assets.
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The economic capital VaR constraint requires the bank to hold a large enough

equity capital to absorb the drop in value of the bank’s assets following a given

surprise deterioration in aggregate TFP, thus protecting depositors from making

a loss. This requirement is used to derive a formal definition of Value-at-Risk.

I show Analytically that, when constrained by an economic capital VaR, the

cyclical behaviour of bank leverage depends on the impact of real shocks on three

important variables: the bank’s equity, the bank’s expectation regarding future

defaults and demand for loans. Following an adverse aggregate shock, the bank

can increase leverage (countercyclical leverage) if the shock causes a large dete-

rioration in the bank’s equity with moderate effects on default expectations and

credit demand. On the other hand, if the adverse shock increases future de-

fault expectations, or reduces credit demand without much impact on the bank’s

balance sheet, the bank reacts by reducing leverage (procyclical leverage).

In specifications where leverage is procyclical, the VaR constraint can be in-

terpreted as a procyclical upper limit on the bank’s leverage. The procyclical

leverage cap compounds the procyclical behaviour of the bank’s equity, restricting

credit supply in the trough of the business cycle and easing it when the economy

is booming. This generates countercyclical risk premia that worsen credit access

when default rates are high and vice versa. The Value-at-Risk constraint acts as

a financial accelerator, but unlike popular credit accelerator models that focus on

the borrower’s net worth– e.g., Carlstrom and Fuerst (1997); Kiyotaki and Moore

(1997); Bernanke, Gertler and Gilchrist (1998)–the model I present also generates

countercyclical credit spreads and credit risk premia.1

The model is estimated to quantitatively replicate many salient features of the

credit cycles, including realistic dynamics of default rates, credit spreads, bank

leverage and lending. Insights gained from the theoretical results are explored

further through simulation of the estimated version of the model. Simulations

show that the model can produce quantitatively reasonable first and second mo-

ments of credit spreads and bank leverage. Moreover, the endogenous bank equity

fluctuations and VaR constraint on leverage can significantly affect real variables

such as aggregate investment.

In the model I present, lenders operate under a Value-at-Risk constraint limiting

their ability to lend. The large TFP shock required for the economic capital Value-

1The inability of financial accelerator models to reproduce countercyclical credit spreads is discussed
in Gomes, Yaron and Zhang (2003).
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at-Risk constraint to generate realistic risk premia is consistent with the economic

disasters documented in Barro (2006). Barro (2006) calibrates the average size

and occurrence probabilities of economic disasters using data from twentieth-

century global history. The author then builds on the previous work of Weil

(1989) and Rietz (1988) to design a real business cycle model providing a solution

to the equity premium puzzle, i.e., replicating high returns on equity investments,

that exceeds by far the low returns on risk-free debt. Following Gourio (2013),

I use the likelihood and size of economic disasters documented by Barro (2006)

to inform the model’s calibration. Gourio (2013) assumes an exogenous time-

variable disaster risk driving the bond credit risk premia. In this paper, I show

that, when interacting with the lenders’ Value-at-Risk rule, the possibility of a

disaster-type risk is enough to generate reasonable credit spread and risk premia

dynamics, without the need to assume variable disaster probabilities.

The model builds on a rich literature concerned with the role played by the

fluctuations in the financial intermediaries’ balance sheet in a worsening supply

of financing to the economy (e.g., Gertler and Karadi, 2011; Gertler and Kiyotaki,

2010). This paper focuses on the interaction between aggregate real shocks, en-

dogenous defaults and risk-taking rules in the financial intermediation sector.

Financial intermediaries can restrict lending when their balance sheet is impaired

(contemporaneous change in endogenous default rates) and their appetite for

lending is decreased by the interaction of the VaR rule with the endogenous fluc-

tuations of future defaults.

Nuño and Thomas (2017) build on the work of Adrian and Shin (2010, 2014)

and present a general equilibrium model with endogenous bank leverage fluctua-

tions. This work departs from the set-up in Nuño and Thomas (2017) in several

ways. First, Nuño and Thomas (2017) assume that banks enter into perfect state-

contingent debt contracts with the borrowing firms that entitle them to the full

cash flow emanating from productive firms in the economy. Their framework as-

sumes no default in the productive sectors. Banks can, however, default as they

use debt contracts to partially finance their lending operations. The framework in

Nuño and Thomas (2017) cannot be used to model default rates in the corporate

sector, nor can it be used to comment on lending risk premia beyond what can

be justified by default risk. Moreover, Nuño and Thomas (2017) build on the

microfoundations in Adrian and Shin (2014) where the presence of a risk-shifting

moral hazard affecting the bank lending decision is used to justify a Value-at-Risk
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rule. In this paper, all borrowing firms are a priori identical, which excludes the

risk-shifting argument as a microfoundation of the Value-at-Risk rule. The bank

is, however, exposed to aggregate TFP shocks that affect default rates and thus

the performance of its loan portfolio.

Adrian and Duarte (2018) present a continuous-time New Keynesian model

featuring financial vulnerability. They introduce a banking sector, tasked with

financing the economy’s productive sector, that is constrained by an occasionally

binding Value-at-Risk rule. They show that monetary policy also reacts to output

via the pricing of risk that relates to the tightness of the Value-at-Risk constraints.

Unlike in the current work, the authors assume that the Modigliani-Miller theorem

applies to both the borrowing firm and the lending bank. They therefore abstract

from defaults in the productive sector and from the role played by the bank’s

capital structure, two aspects at the heart of this work. Moreover, in Adrian and

Duarte (2018) fluctuations result from exogenous preference shocks affecting the

banks’ demand for assets. The model I present here assumes that TFP is the sole

source of fluctuations and is thus closer to the existing RBC and DSGE literature.

The remainder of this work is organised as follows. Section II presents the

general equilibrium model. Section III is dedicated to presenting several analytical

results that help clarify the mechanisms at play. Section IV provides details about

the calibration and simulation of the model and comments on the steady-state

results and dynamic effects of the main mechanism. Section V concludes. The

macro-finance stylised facts are discussed next in the section I.

I. Stylised Facts

This section documents the main stylised facts captured by the model presented

here. These relate to the cyclical behaviours of the balance sheets of the financial

intermediaries and to the cyclical behaviour of credit spreads.

I consider the balance sheet properties of the aggregate financial intermediation

sector composed of financial companies, brokers/dealers and depositary institu-

tions. Table 1 shows the business cycle statistics of the balance sheet of the ag-

gregate financial sector for the period 1981:I–2022:IV. In line with the empirical

findings in Nuño and Thomas (2017), the table shows that the assets, equity and

leverage of the aggregate financial sector are more volatile than GDP both at the
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quarterly and annual frequencies.2 In addition, leverage in the aggregate financial

sector is strongly correlated with banks’ assets and strongly negatively correlated

with equity. Moreover, both assets and leverage are procyclical. Equity, however,

does not display a statistically significant correlation with GDP.

Table 1—Business Cycle Statistics, 1981:I-2022:IV

Standard deviation (%) Quarterly freq. Annual freq.
Assets 2.7 5.5
Leverage 4.2 6.4
Equity 3.5 4.0
GDP 1.3 1.7

Correlations
Leverage–Assets 0.58 0.78

(0.000) (0.000)
Leverage–Equity -0.77 -0.52

(0.000) (0.000)
GDP–Assets 0.55 0.49

(0.000) (0.000)
GDP–Leverage 0.24 0.49

(0.000) (0.001)
GDP–Equity 0.11 0.077

(0.178) (0.626)
Note: All series are logged and linearly detrended using a Hodrick-Prescott filter (λ = 1600 for quarterly
series and 100 for annual series); p-values of the test of no correlation against the alternative of nonzero
correlation are reported in parentheses.
Source: U.S. Flow of Funds and Bureau of Economic Analsyis. See Data Appendix for details.

Figure 1 displays the business cycle components of the aggregate financial sec-

tor’s leverage, equity and total assets in the period spanning 2006:I to 2012:II.

The figure’s dynamics are consistent with the business cycle statistics of table 1.

All three balance sheet quantities display significant volatility. Leverage appears

to be strongly correlated with total assets and negatively correlated with equity.

The cyclical components of leverage and total assets appear to peak at the start

of the Great Recession. Cohen-Cole et al. (2008) justify this by an expansion

of banks’ exposure due to firms using pre-existing loan commitments and lines

of credit, and securitisation exposure returning to banks’ balance sheets. Bank

2Unlike Nuño and Thomas (2017) who assume a linear trend of the log variables, detrending here
uses a Hodrick-Prescott filter.
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equity, on the other hand, experienced a sharp decline at the onset of the Global

Financial crisis, then quickly recovered to much higher levels by 2009-II, before

the end of the Great Recession. The behaviour of bank equity explains the high

volatility of leverage during the Great Recession. Leverage increases more than

assets to compensate for lower equity capital, and the cyclical component of lever-

age turns negative as bank capital recovers. Finally, the acyclical behaviour of the

financial sector equity during the Great Recession is consistent with the insignif-

icant equity-GDP correlation figures in table 1; the equity’s cyclical component

drops as the banks’ assets are eroded and recovers as banks raise capital under

market pressure (Brei and Gambacorta, 2016).

Figure 1. Assets, equity and leverage of the aggregate financial sector.

Note: All variables are expressed in log forms and as a deviation from trends.

Source: U.S. Bureau of Economic Analysis and Moody’s.

For the sake of clarity, the main stylised facts regarding the balance sheet of

the aggregate financial sector are summarised below.

• Credit Supply is procyclical. Financial intermediaries tend to ration credit

supply in periods of weak economic activity and increase credit supply dur-

ing booms.
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• Bank leverage is procyclical. Banks tend to decrease leverage during eco-

nomic downturns and increase leverage during booms.

• The credit rationing is partly caused by the deterioration of banks’ equity

capital in the early stages of a recession. Overall, bank equity displays an

acyclical behaviour.

The countercyclical behaviour of credit spreads is richly documented in eco-

nomic literature. Gilchrist and Zakraǰsek (2012) decompose credit spreads into

a component that can be explained by expected default risk and a residual com-

ponent, dubbed excess bond premium, that is interpreted as a risk premium

attached to lending. Furthermore, they show that most of the volatility of credit

spreads finds its origins in the fluctuations of risk premia, as only a small fraction

of this volatility can be attributed to changes in default loss expectations. Gourio

(2013) notes that given the historical default probabilities of BAA and AAA-rated

bonds, default risk justifies about a fifth of the BAA-AAA yield spread. Thus,

about four-fifths of the BAA-AAA spread reflects a credit risk premium.

In addition to the behaviour of banks’ balance sheets discussed above, the model

presented here aims to reproduce several stylised facts related to the cyclical

behaviour of credit spreads. Namely, that credit spreads are countercyclical and

that their fluctuations are mainly driven by changes to risk premia.

II. Model

I study a general equilibrium model with a productive sector composed of a

continuum of firms that produce the economy’s final good and transform part

of the economy’s final output into new capital. Firm-level capital production is

funded through non-state-contingent loans issued by a financial intermediation

sector. I assume that the financial intermediation sector is composed of a unit-

measure continuum of identical banks. The representative bank uses households’

deposits and bank equity to fund its lending operations. Some of the borrowing

firms can default on their debt obligations when their revenues are too low to

cover debt payments, and banks are subject to a Value-at-Risk constraint that

limits lending. The economy is subject to aggregate TFP shocks that affect the

production of the economy’s single consumption good while capital production is

subject to firm-level idiosyncratic shocks.
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A. Firms

I build on the default mechanism in Gourio (2013) and I assume the existence

of a production sector of measure one, populated with firms that transform the

economy’s final good into capital before producing the final good in the following

time period. Banks fully finance the firm’s purchase of the goods required for

capital production through loan issuance. It takes a firm, indexed i, a single

period to make the new capital investment Ii,t+1, to do so it secures financing

through a single-period maturity loan of principal Xi,t and uses the following

production function to transform the invested quantity of final good Xi,t into

capital

(1) Ii,t+1 = ZiX
γK
i,t

{
1− κK

(
Xi,t

X
− 1

)2
}
,

where the index i denotes the firm, Zi is a firm-specific efficiency factor, κK is

a parameter reflecting the cost of changing the level of capital production, X is

the steady-state loan size, XγK
t represents the deterministic component of the

capital production technology before incurring adjustment costs and 0 < γK < 1

a curvature parameter. Furthermore, I assume that capital production efficiencies

follow a log-normal process zi,t := lnZi,t = σKϵi−σ2
K/2, where the term ϵi reflects

the firm’s idiosyncratic capital production efficiency. The shocks ϵi are normally

distributed, independent across firms and independent from other model shocks.

The parameter σK is a volatility parameter representing the riskiness of capital

production. The type of firm ϵi is unknown before the loan’s maturity. All firms

are a priori identical. They all face the same cost of financing Rt and raise the

same loan principal Xt.

The firm aggregates the capital it produces with additional capital it rents from

households and uses the resulting capital in the production of a final good used

by households for consumption and by all firms to make new capital investments.

The production of the economy’s final good is constrained by a Cobb-Douglas

technology

(2) Yi,t = Za
t K

α
i,tL

1−α
i,t ,

where α is the share of capital, Za
t represents aggregate total factor productivity
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and Ki,t is the capital used by the firm. The firm is assumed to combine its own

capital investment with the preexisting capital rented from households and use

the resulting capital stock to produce. That is

(3) Ki,t = Ii,t +KR
i,t,

where KR
i,t denotes the capital rented by firm i from households. The total factor

productivity Za
t is driven by the AR(1) process ln(Za

t ) = zat = ρazat−1 + ϵat ,

where ϵat are i.i.d. shocks with a normal component eat and an independent jump

component: ϵat = σae
a
t − Jt.dNt. The term dNt represents a Poisson process that

takes the value 1 with probability µa and value 0 with probability 1− µa and Jt

represents the severity of the jump when dNt = 1. The size of the jump Jt is

assumed to be independently and identically distributed, N(J̄ , σJ).

Production problem

At the time of production, the firm realises its capital production Ii,t and sets

labour and capital demand, conditional on Ii,t to maximise surplus

(4) max
Li,t,KR

i,t

πI
i,t,

where πI
i,t+1 denotes surplus, that is the firm’s revenue net of wages and the cost

of renting capital

(5) πI
i,t = Yi,t −WtLi,t −RK

t KR
t .

The surplus maximising problem yields

(6) Wt = (1− α)
Yi,t
Li,t

= (1− α)
Yt
Lt

,

(7) RK
t = α

Yi,t
Ki,t

= α
Yt
Lt

.
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Replace in the surplus expression for the KR
t using conditon 3 and for Wt and

RK
t using the capital and labour first-order conditions

(8) πI
i,t = α

Yt
Kt

Ii,t.

The firm makes no profit and no loss from the production of the final good.

However, it generates a surplus from the part of capital it owns Ii,t.

Investment problem

In the investment stage, the firm sets its loan demand to maximise the expected

profit, ignoring the possibility of default

(9) max
Xi,t

Etπi,t+1.

The profit πi,t+1 includes the surplus from producing πI
i,t+1 and the proceeds from

selling the depreciated capital produced using loans raised in the previous period

(1− δ)Ii,t+1, net of debt payment RtXi,t

(10) πi,t+1 = πI
i,t+1 + (1− δ)Qt+1Ii,t+1 −RtXi,t,

where Qt+1 is the price of capital at time t + 1.3 Using expression 8, one can

write

πi,t+1 =

{
(1− δ)Qt+1 + α

(
Yt+1

Kt+1

)}
︸ ︷︷ ︸

:=RI
t+1

Ii,t+1 −RtXi,t.

For brevity, I note g(Xt) := XγK
t

(
1− κK(Xt

X − 1)2
)
the deterministic part of

the capital production function and RI
t := (1 − δ)Qt + α

(
Yt
Kt

)
the return on

investment. This enables us to rewrite the firm’s profit function as follows

(11) πi,t+1 = RI
t+1e

σKϵi−σ2
K/2g(Xi,t)−RtXt.

From 11 and noting the independence of ϵi from the remaining shocks affecting

the economy, the profit maximisation problem 9 yields a first-order condition

3The firm ignores the impact of default on expected profits. See Arellano, Bai and Kehoe (2019) for
an alternative assumption where the firm takes the possibility of its own default into account.
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common to all firms, confirming that all firms raise the same loan principal Xt

(12) Rt = g′(Xt)EtR
I
t+1.

It is worth highlighting that while the firm behaviour adopted here is partly in-

spired by Gourio (2013), the present specification differs in two important aspects.

First, I assume that the firm production of capital only concerns new investments

and not the full capital stock. This helps in linking firm borrowing to new in-

vestment, thus helping generate quantitatively reasonable dynamics of aggregate

lending. In addition, I assume a capital production technology that allows for

some curvature in capital production as a function of the loan size Xt (γK < 1).

Finally, capital production is subject to adjustment costs when the loan size dif-

fers from its steady-state value.4 As we will see below, these assumptions are

key to generating quantitatively reasonable dynamics of default rates and credit

spreads.5

Endogenous defaults

Default happens when the firm’s profit turns negative πi,t < 0. Upon default,

the lending bank takes over the production process and loses a fraction θK of the

defaulting firm’s own capital Ii,t in the process, reflecting a cost for the bank to

go through bankruptcy workouts and the fact that the firms’ managers possess

more knowledge about the production process than banks.

The negative profit condition is equivalent to the firm’s idiosyncratic shock is

lower than the cut-off point −ξt: ϵi < −ξt where

(13) ξt =
1

σK
ln
(RI

t g(Xt−1)

Rt−1Xt−1

)
− σK

2
.

The firm’s default probability is thus given by Φ(−ξt), where Φ denotes the nor-

mal cumulative distribution function. Following the nomenclature inspired by

Merton (1974), ξt is called the ”distance to default”. In the current set-up, the

next period’s distance to default depends on the current loan size Xt, the gross

4In Gourio (2013), g(Xt) = Xt. In line with equation 12, this means that the economy reacts to
higher debt costs (higher Rt) by reducing capital investments (higher RI

t+1, thus lower Xt). However,
constant returns to scale in capital production imply that the firm size is indeterminate.

5Unlike in Gertler and Karadi (2011) the adjustment costs to capital production are not used to
impact the price of capital through a net investment first-order condition. In this model, demand for
capital emanates from the housing sector (see condition 18 below).
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rate of interest Rt and the future return on investment RI
t+1. Note here that

Φ(−ξt+1) is the default probability at the loan’s maturity before the firm realizes

its type ϵi. Once the type ϵi is known to the borrowing firm, default or survival

are immediately determined and not random any more. Note also that the fluc-

tuation of the return on capital RI
t+1 is the only source of changes in the default

rates beyond what is expected at the time of loan issuance; all other variables

affecting the distance to default ξt+1 are known at the time of issuance. During

recessions, the return on investment RI
t+1 is low. This reduces the firms’ rev-

enues leading to more defaults. Conversely, RI
t+1 is higher during booms, leading

to fewer defaults in the aggregate. Costly adjustments to the level of capital

production have two important implications. First, they dampen fluctuations in

capital production. Second, the costly adjustment in capital production pushes

firms to maintain a relatively high demand for loans when returns on capital are

low. The loan market clears at a higher interest rate Rt, implying higher credit

spreads during recessions. The parameter κK is key to generating realistic credit

spread dynamics.

B. Households

Households like to consume and dislike work as per the utility function

(14) U(Ct, Lt) =
C1−σH
t

1− σH
− χH

L1+ηH
t

1 + ηH
.

In addition, households invest in depositsDt and accumulate capitalKt by buying

the capital produced by firms after they exit the market. They decide consump-

tion Ct, labour supply Lt, depositsDt and new capital purchases It by maximising

their expected discounted lifetime utility

(15) max
Cu,Lu,Du,Iu

Et

∞∑
u=0

βuU(Ct+u, Lt+u)

where 0 < β < 1 denotes the preferences discount factor. The household’s opti-

misation problem is subject to the budget constraint

(16) Ct +Dt +QtIt + EB
t = wtLt +RD

t−1Dt−1 +RK
t Kt−1 +ΠB

t +Πt
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where δ is the depreciation rate of capital, RK
t is the rental rate of capital, RD

t is

the gross deposit rate, ΠB
t the banks’ profit, Πt the profit distributed by firms and

EB
t the bank’s equity. The dynamics of capital are driven by Kt = (1− δ)Kt−1+

It. Finally, the Euler equations for deposits, capital and labour conditions are

standard

(17) 1 = RD
t Etmt,t+1,

(18) Qt = Etmt,t+1[(1− δ)Qt+1 +RK
t+1],

(19) χHLηH
t = wtC

−σH
t ,

where mt,t+u is the multi-period stochastic discount factor mt,t+u := βu C
−σH
t+u

C
−σH
t

.

C. Banks

The economy under study relies on a representative bank that provides financial

intermediation to all firms. The bank issues loans to fund capital production, and

its profits are impacted by fluctuations in default rates. To finance loan issuance,

the bank raises equity capital and accepts deposits from households. Additionally,

bank lending is restricted by a Value-at-Risk constraint.

The bank’s profit

Banks hold a balance sheet composed of loans issued to finance capital ac-

cumulation and fund these loans using households’ deposits. The representa-

tive bank invests in a large enough portfolio of loans such as the final frac-

tion defaulting is Φ(−ξt+1).
6 Upon default, the bank takes over the produc-

tion process, losing a fraction θK of the capital owned by the defaulting firm in

the process. We assume, however, that bankruptcy does not impact the final

good production beyond its impact on the firm’s capital Ii,t. At the time t, the

bank’s total recovery proceeds include the surplus from all firms with an idiosyn-

cratic shock ϵi smaller than −ξt, reduced by the fraction θK lost after default

6This is a direct consequence of the law of large numbers.
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Rect := (1 − θK)RI
t g(Xt−1)

∫ −ξt
−∞ Zi,tdϵi. Given the distribution of the idiosyn-

cratic shocks ϵi and using the definition of the distance-to-default to replace for

Qtg(Xt−1), the aggregate recovery is7

(20) Rect = (1− θK)Rt−1Xt−1e
σKξt+σ2

K/2Φ(−ξt − σK).

The amount recovered by banks increases with the default rate and decreases

with the fraction of the defaulting firms lost upon default θK .

The bank’s profit includes the return from the non-defaulting loans Φ(ξt+1)RtXt,

the recovery from the defaulting loans Rect+1 and the cost of borrowing from

households RD
t Dt

(21) πB
t+1 = RtXt

{
Φ(ξt+1) + (1− θK)eσKξt+σ2

K/2Φ(−ξt − σK)
}
−RD

t Dt.

Bank problem

The bank’s lending is subject to the constraint whereby the bank’s equity capital

must be large enough to absorb potential losses represented by a Value-at-Risk

quantity V aRt to be specified below

(22) V aRt ≤ EB
t .

In addition, the bank’s lending operations are also subject to the repeating budget

constraints

(23) Divt + (1 + cB)Xt +RD
t−1Dt−1 ≤ Rt−1Xt−1Φ(ξt) +Rect +Dt,

where the right-hand side of the budget constraint 23 reflects the funds available

to the bank at time t, including the proceeds from the performing loans issued in

the last period Rt−1Xt−1Φ(ξt), the amount recovered from defaulting loans Rect

and new deposits Dt. The left-hand side of the budget constraint describes the

use of the funds available to the bank at time t. Namely, paying back last period’s

depositors with interest (RD
t−1Dt−1), compensating equity capital holders through

the dividend distribution Divt and the funding of new loan and associated lending

costs (1+cB)Xt. Furthermore, I assume that the bank can only fund dividends by

7See appendix C.C2 for a full derivation.
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using a fraction (dt−1 < 1) of the profits from the last period’s lending operation

and that the share of profits dedicated to dividends is decided at time of lending

(24) Divt = dt−1π
B
t .

This latest assumption helps achieve two desirable effects. First, it prevents the

use of new deposits to reward existing equity capital. And, crucially, it helps make

equity capital sticky, as it prevents the bank from reacting to the deterioration

of its equity capital by curtailing dividends or by immediately raising new equity

(Div < 0). The bank can still improve equity capital by retaining more profits

or raising new equity, but it needs to wait until the next period for this to take

effect. By definition, the bank’s equity is the part of its asset (and lending costs)

that is not covered by debt, that is

(25) EB
t = (1 + ct)Xt −Dt.

Plugging the (binding) budget constraint 23 in the definition of the bank equity

yields the alternative expression

(26) EB
t = (1− dt−1)π

B
t .

Expression 26 clarifies that deterioration to the bank’s profit due to higher-than-

expected default rates will erode the bank’s equity capital and that capital is

sticky because it will take one period before the bank can raise capital by adjusting

dt. The inability of the bank to immediately replenish its equity capital is in

line with the empirical observations in Adrian and Shin (2010, 2014), where the

authors show that the first variable of adjustment used by brokers/dealers when

adjusting leverage is the assets’ side of the balance sheet as opposed to equity

capital that remains stable in the short term.

The bank sets the size of its lending operations (Xt) and its future dividends’

policy (dt) by maximising the expected discounted dividends

(27) max
Xs,ds

Et

∑
s>t

mt,s

(1 + rE)s−t
ds−1π

B
s ,

subject to the Value-at-Risk constraint 22, the budget constraint 23 and to the

dividends constraint 24. Dividends are discounted using the economy’s stochas-
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tic discount factor mt,s and an extra discount rate rE > 0 reflecting an equity

premium over risk-free deposits.8

Value-at-Risk

I introduce a generic concept of Value-at-Risk as a measure of the riskiness of the

bank’s portfolio. A good measure of the risk of the bank’s portfolio would depend

on the size of the portfolio Xt, the loans’ interest rate Rt, and the distribution of

distance-to-defaults ξt+1 affecting the performance of the bank’s portfolio at time

t+ 1.

DEFINITION 1: A Value-at-Risk measure V aRt is a non-negative function of

the bank’s portfolio size Xt, the (gross) loans’ interest rate Rt and the distribution

of the distance-to-default at time t+ 1, noted D(ξt+1)

(28) V aRt = V aR(Xt, Rt;D(ξt+1)).

Furthermore, I assume that V aR is C1 in Xt and Rt, increasing in Xt and de-

creasing in Rt. A unit Value-at-Risk measure is defined as

(29) V aRU
t = V aRt/Xt,

where V aRt is a Value-at-Risk measure as defined above.

Definition 1 allows for the V aR measure to be non-positive, in that case, the

bank’s lending is unconstrained by the Value-at-Risk rule. It is reasonable to as-

sume that the measure of portfolio risk increases with the portfolio size (∂V aR
∂Xt

≥
0). Similarly, all other things being equal, a portfolio providing higher income

before defaults is preferable from a V aR perspective (∂V aR
∂Rt

≤ 0). An additional

reasonable feature of V aRt measures could be that they increase when the distri-

bution D(ξt+1) implies that high default scenarios are more likely at time t+1. I

abstract from making this assumption as it is not needed for the model’s deriva-

tions. In the remainder of this section, I introduce two examples of VaR measures

verifying the conditions in definition 1.

8This financing friction can be justified by the asymmetry of information issues as discussed in
Holmström and Tirole (1998).
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Constant leverage Value-at-Risk

A simple VaR rule can emanate from a constant leverage constraint, defined as

the ratio of the bank’s exposure to its equity capital

(30) λB
t ≤ λCst.

To embed this, rather simple, leverage constraint in the current set-up where we

express limits on lending in terms of Value-at-Risk, we can rewrite it as follows

(31) V aRCst ≤ EB
t ,

where by definition V aRCst := Xt/λ
Cst. A constant constraint on leverage can

be therefore seen as equivalent to a Value-at-Risk rule, where the Value-at-Risk

is a constant share of the bank’s exposure. V aRCst is linear in the size of the

portfolio Xt, with linearity coefficient being the corresponding unit Value-at-Risk

is V aRCst,U := 1/λCst. Clearly, V aRCst verifies the conditions in definition 1.

While this measure does not depend on the loan rate Rt, it is still (weakly)

decreasing in Rt. Finally, V aRCst does not depend on the distribution D(ξt+1);

it is a risk-insensitive VaR measure.

Economic capital Value-at-Risk

I now specify the notion of economic capital Value-at-Risk. This definition is

derived from the notion of economic capital as a way to guarantee that the finan-

cial intermediary can withstand a certain adverse scenario and continue operating

as a going concern. Formally, the financial intermediary’s capital should be large

enough so that when the assets depreciate under an adverse risk scenario, their

value still suffices to cover the financial intermediary’s debt obligations, where

the adverse risk scenario is defined as the 1−pV aR percentile of the period’s t+1

distribution of the bank assets’ value

(32) RtXtΦ(ξ
V aR
t ) +RecV aR

t︸ ︷︷ ︸
t+1 assets at VaR scenario

≥ RD
t Dt︸ ︷︷ ︸

t+1 liabilities

.

The superscript .V aR is used to indicate the value of the relevant model variables

under the Value-at-Risk scenario. ξV aR
t and RecV aR

t refer to t + 1 distance to
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default and recovery at the VaR scenario respectively

(33) ξV aR
t :=

1

σK
ln
(RI,V aR

t g(Xt)

RtXt

)
− σK

2
,

(34) RecV aR
t := (1− θK)RI,V aR

t g(Xt)

∫ −ξV aR
t

−∞
eσKϵidϵi,

where RI,V aR
t is the return on capital investment at VaR scenario

(35) RI,V aR
t = RI

t+1(ϵ
a
t+1 = −ϵa,V aR),

−ϵa,V aR the next period’s innovation to log-TFP corresponding to the 1 − pV aR

quantile ϵa,V aR := −F−1(1− pV aR) and F is the cumulative distribution of TFP

innovations. Condition 32 is equivalent to the bank’s asset being larger than its

liabilities in the next period with probability pV aR. In other words, condition 32

restricts the bank’s lending to maintain a bank insolvency probability in the next

period that is less than 1− pV aR. For example, when the bank is contained by a

pV aR = 95% VaR, the bank’s own default probability is limited to 5%. Note how

Value-at-Risk variables referring to default risk at time t+ 1 take the time index

t. This notation is adopted to indicate that these quantities are known at time

t and that they are crucial for credit issuance at time t. Replacing for Dt in 32

using the balance sheet equation (1 + cB)Xt = Dt + EB
t and rearranging

(36) (1 + cB)Xt −
Rt

RD
t

XtΦ(ξ
V aR
t )− 1

RD
t

RecV aR
t︸ ︷︷ ︸

:=V aREC
t

≤ EB
t .

Using the recovery expression 20 leads to the definition below of the economic

capital Value-at-Risk as the shortfall in the discounted next period’s value of the

bank assets below its portfolio notional including lending costs (1 + cB)Xt at the

VaR scenario.9

(37) V aREC
t := Xt

{
1 + cB − eSt−SV aR

t

}
,

9See appendix C.C3 for full derivation.
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where SV aR
t is a credit spread representing the riskiness of the VaR scenario

(38) SV aR
t := − ln

(
Φ(ξV aR

t ) + (1− θK)eσKξV aR
t +σ2

K/2Φ(−ξV aR
t − σK)

)
,

ξV aR
t is the distance to default assuming that log-TFP drops by ϵV aR at time

t+1 and St is the loan’s credit spread St := ln
(

Rt

RD
t

)
. Furthermore, the economic

capital Value-at-Risk per dollar lent (or unit VaR) V aREC,U
t := V aREC

t /Xt is

given by

(39) V aREC,U
t := 1 + cB − eSt−SV aR

t .

Note that the definition of the unit Value-at-Risk V aREC,U
t enables the rewriting

of the VaR constraint as an upper limit on the bank’s leverage λB
t := Xt/E

B
t

(40) λB
t ≤

{
1 + cB − eSt−SV aR

t

}−1
.

The inequality 40 provides a relationship between three important quantities:

the credit spread St, the bank leverage λB
t and the riskiness of the V aR scenario,

represented by SV aR
t . When the V aR constraint is binding, a riskier Value-at-Risk

scenario (higher SV aR
t ) reduces leverage. On the other hand, higher credit spreads

St, increase leverage at the constraint. All other things being equal, higher net

income from lending increases expected profits, thus providing the bank with a

cushion enabling it to absorb more losses without impairing deposits. This effect

is important from a macroprudential perspective. In the lows of the cycle, the

Value-at-Risk is higher, leading to lower leverage. Lower leverage depresses the

supply of credit, thus raising credit spreads higher. However, higher credit spreads

help relieve the pressure on leverage, thus increasing credit supply and reducing

credit spreads. The effect of higher credit spreads in relaxing the tight leverage

constraint can help the economy escape the leverage and risk premia doom loop

described in Geanakoplos (2010). The VaR function defined in equation 37 is

somewhat similar to the one introduced in Adrian and Duarte (2018), as in both

definitions V aR/Xt decreases with the expected returns on the bank’s portfolio

and increases with the severity of the VaR scenario.10

10The VaR notion introduced in 37 relates to the asset’s holding period, while Adrian and Duarte
(2018) refer to a typically shorter risk horizon.
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D. Aggregation and Market Clearing

In this subsection, I clarify the market clearing conditions. These are

• The clearing of the labour market.

• The clearing of the loan market where the supply of loans by banks meets

the demand for credit.

• The clearing of the market for physical capital where the households’ de-

mand for newly created capital meets the new capital produced by all firms

and sold after the end of the final production process

Kt − (1− δ)Kt−1 =

∫
ϵi

Ii,tdF (ϵi)− θK

∫
ϵi<−ξt

Ii,tdF (ϵi).

• The clearing of the final goods market Yt = Ct + (1 + cB)Xt, where Yt =∫
ϵi
Yi,tdF (ϵi) = Za

t K
α
t L

1−α
t is the aggregate output.

III. Analytical results

This section provides several theoretical results clarifying the two main mech-

anisms at play in the model. First I provide results describing the implications

of the chosen endogenous defaults mechanism. Then, I turn to the Value-at-Risk

constraint and its effects on leverage and risk premia.

A. Defaults rates dynamics and steady-state results

The proposition below provides an expression of the steady-state distance to

default ξ and describes its dynamics outside the steady state.

PROPOSITION 1: The steady-state distance to default is determined by the pa-

rameter driving the curvature of the capital production function γK and the pa-

rameter driving the idiosyncratic risk associated with capital production σK

(41) ξ = − ln(γK)

σK
− σK

2
.

Dynamically, default rates differ from their steady-state level due to unexpected

changes to the return on capital investment RI
t+1 or as a result of costly adjust-
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ments in capital production

(42) ξt+1 − ξ =
1

σK
ln

(
RI

t+1

EtRI
t+1

)
− 1

σK
ln

(
1− 2κK

γK

(Xt/X){Xt/X − 1}
1 + κK{Xt/X − 1}2

)
.

For small movements, the distance-to-default deviation from the steady state can

be approximated as below

(43) ξt+1 − ξ ≈ 1

σK

{
ln(RI

t+1)− ln(Et[R
I
t+1])

}
︸ ︷︷ ︸

unexpected shocks’ effect

+

effect of costly adjustments︷ ︸︸ ︷
2κK
σKγK

{ln(Xt)− ln(X)} .

PROOF:

See appendix C.C4.

Unsurprisingly, proposition 1 implies that steady-state default probability in-

creases with the riskiness of the borrowing firm’s capital production process repre-

sented by the parameter σK . In addition, the steady-state default rate increases

with the capital production function curvature parameter γK . This behaviour

results from the impact of γK on the firm’s expected profit. Assume that the

economy is at the steady state at time t, where EtR
I
t+1 = RI . At the steady

state, the firm’s investment first-order condition 12, implies that the firm’s ex-

pected profit is Etπt+1 = (1 − γK)XγKRI . When capital production is close to

displaying constant returns to scale (γK ≈ 1), the borrowers’ expected profit ap-

proaches zero. This decreases the borrowing firm’s cushion against unexpected

future drops in demand, making defaults more likely. Conversely, lower γK im-

plies higher expected profits, thus making negative profits less likely, which means

lower default rates.

In a dynamic setting, Proposition 1 decomposes the fluctuations in default

rates into two distinct components. The first component is a surprise shock

to the economy that creates a wedge between the return on capital and prior

expectations. The second component arises from costs affecting the ability of

borrowing firms to freely adjust capital production levels. When the economy

is in a steady state at time t, any deviation of the distance to default from its

steady-state value is solely driven by unexpected changes to the return on capital

ξt − ξ = 1
σK

{
ln(RI

t )− ln(RI)
}
. While lower values of σK decrease the steady-
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state default, dynamically, they increase the volatility of default rates given the

dynamics of the return on capital investments RI
t . The volatility parameter σK

is therefore key to the volatility of default rates.

Assuming no further unexpected shocks after time t + 1, the fluctuations of

default rates originate from capital production adjustment costs: ξt+1 − ξ ≈
2κK
σKγK

{ln(Xt)− ln(X)}. After an unexpected shock, default rates are higher if

the unexpected shock causes lower capital production at time t. For reasonable

calibrations, this would be the case after an unexpected adverse shock to aggregate

productivity Za
t . The adjustment cost κK is, therefore, useful in calibrating the

persistence of default rate fluctuations. The credit risk of loan contracts issued

at time t is driven by default rates at time t + 1. The parameter κK is key for

the dynamics of the fundamental parts of credit spreads.11

Solution of the bank problem

As discussed above, the Value-at-Risk constraint can be interpreted as a con-

straint on the bank leverage λB
t := Xt/E

B
t

(44) λB
t ≤ 1/V aRU

t ,

where V aRU
t := V aRt/Xt is the unit Value-at-Risk. The constraint 44 is easier to

interpret as an upper limit on leverage when V aRU
t is independent of the bank’s

equity and lending decision. This condition is formalised in the definition below.

DEFINITION 2: A Value-at-Risk measure V aRt is linear when the correspond-

ing unit Value-at-Risk V aRU
t := V aRt/Xt is independent of the size of the bank’s

portfolio, i.e.

(45)
∂V aRU

t

∂Xt
= 0.

When the Value-at-Risk measure is linear, the constraint it represents on lend-

ing is equivalent to an external time-dependent upper limit on bank leverage

(46) λB
t ≤ 1

V aRU (Rt,D(ξt+1))
,

11As we will see below, κK is also important to the fluctuations of risk premia.
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where by definition V aRU (Rt,D(ξt+1)) := V aR(Xt, Rt,D(ξt+1))/Xt. Note that

the Value-at-Risk measure V aRCst introduced in section II.C is linear in Xt. To

simplify the exposition of the model results, I restrict attention to this class of

V aR measures.

ASSUMPTION 1: The representative bank’s lending is subject to a linear Value-

at-Risk constraint.

Furthermore, I assume that the bank neglects the effect of incremental lending

on expected default rates. This assumption helps correct for an important short-

fall of this model whereby firms do not accumulate borrowed capital during their

lifetime. The firm borrows once, produces capital then produces the economy’s

final good before winding down its activity. This means that the effect of new

lending on the firm defaults is exaggerated in the current framework. Moreover,

this assumption greatly simplifies the model’s exposition and the derivation of

analytical results.

ASSUMPTION 2: The representative bank neglects the effect of its lending on

expected default rates.

Under Assumption 2, the economic capital VaR introduced in II.C is also a

linear VaR measure.12 Under both assumptions 1 and 2, the leverage constraint

is external to the bank’s problem, and the bank can neglect the effects of its

lending on default expectations. This simplifies the bank’s problem, as shown

in the proposition below. The proposition states that the bank sets the next

period’s dividend ratio such as the next period’s discounted equity is equal, in

expectation, to the next period’s discounted bank’s value.

PROPOSITION 2: Assuming that the VaR constraint binds near the steady state,

then near the steady state, the bank sets the dividend ratio dt such as

(47) Etmt,t+1E
B
t+1 = Etmt,t+1V

B
t+1,

where V B
t designates the bank’s value

(48) V B
t = Et

mt,t+1

1 + rE
(dtπ

B
t+1 + V B

t+1).

12Note that the economic capital unit Value-at-Risk V aREC,U is fully determined by credit spreads
and expectations over the next period’s default rates (equation 39).
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PROOF:

See appendix C.C5.

To isolate the effects of the Value-at-Risk constraint, I consider the bank’s prob-

lem with unconstrained leverage. The bank would still maximise the expected

discounted dividends as per the optimisation problem in expression 27, where the

optimisation is subject to the budget constraint alone. The first-order conditions

yield that the bank dedicates the full bank’s profit to pay dividends (dt = 1), im-

plying no bank equity and full financing of loan issuance using deposits. Lending

is determined by the first-order condition13

(49) Rt = (1 + cB)RDef
t = (1 + cB)RD

t e
SDef
t ,

where ”the fundamental loan interest rate” RDef
t is the interest rate that implies

zero expected profits on the bank’s lending operations, ignoring lending costs14

(50) RDef
t :=

RD
t

Et

[
Φ(ξt+1) + (1− θK)eσKξt+1−σ2

K/2Φ(−ξt+1 − σK)
]

and SDef
t is the corresponding credit spread can be defined as SDef

t := ln

(
RDef

t

RD
t

)
.

In other words, this first-order condition 49 sets the loan’s interest rate Rt such

as lending revenues exactly compensate for expected default-related losses. In

the studied framework, credit risk premia beyond the costs of lending cB are a

consequence of the V aR constraint.

PROPOSITION 3: The following results stand in the steady state

• The fraction of the bank’s profit dedicated to dividends dt is d = 1− β
1+rE

.

• The credit spread charged by the bank is S given by

(51) S = SDef + ln
[
1 + cB + rE .V aRU

]
,

13The derivation of the first-order conditions when the bank is not subject to a V aR constraint is in
appendix C.C6

14Definition 50 can be rewritten as Et

[
RDef

t XtΦ(ξt+1) +Rect+1 −RD
t Xt

]
= 0.
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where SDef is the credit spread implying zero expected losses from lending

(52) SDef = − ln
(
Φ(ξ) + (1− θK)eσKξ+σ2

K/2Φ(−ξ − σK)
)
.

The risk premium is thus

(53) SPrem := S − SDef = ln
[
1 + cB + rE .V aRU

]
.

PROOF:

See appendix C.C7.

Proposition 7 provides two important results. First, the fraction of bank profits

dedicated to reward shareholders through dividend distribution decreases with the

patience of the households (higher β) and increases with bank equity premium

rE . Second, the credit spread premium SPrem charged by banks reflects the cost

of lending cB and the interaction of expensive equity financing (rE > 0) and the

riskiness of the Value-at-Risk scenario represented by V aRU . The restriction on

bank leverage only matters if equity financing is more expensive than financing

loans using deposits (rE > 0). When equity financing costs the same as the

interest rate paid to depositors (rE = 0), the steady-state credit spread premium

solely reflects the cost of lending cB. Similarly, the credit spread premium solely

reflects the cost of lending when leverage is very high (V aRU ≈ 0).

When the bank is subject to a binding linear Value-at-Risk constraint, its supply

of credit is determined by its level of equity and the leverage upper limit

(54) Xt = EB
t /V aRU

t .

Given the sticky equity assumption, the level of equity is determined by the

previous dividend ratio dt−1 and the performance of the bank’s existing lending

portfolio πB
t . At the V aR constraint, credit supply is fully determined by the pre-

viously determined dividend ratio, the performance of the previously constituted

bank portfolio πB
t and the potentially risk-sensitive V aR

(55) Xt =
(1− dt−1)π

B
t

V aRU
t

.

When the VaR constraint is not binding, the loan interest rate must satisfy

Rt = (1 + cB)RDef
t . When Rt < (1 + cB)RDef

t , lending is not profitable in
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expectation and the bank refrains from lending. Finally, if and when, for large

enough values of Rt, V aRU
t becomes nonpositive, bank lending is unconstrained

and the bank would meet any level of credit demand. Proposition 4 provides a

full characterisation of the bank’s credit supply function when subject to a linear

Value-at-Risk rule.

PROPOSITION 4: The bank’s loan supply function can be described as follows

(i) The bank does not supply credit when St < SDef
t + ln(1 + cB).

(ii) The bank supply meets any level of loan demand up to
(1−dt−1)πB

t

V aRU ((1+cB)RDef
t ,D(ξt+1))

,

charging the loan rate RDef
t (1+cB), which is equivalent to charging the credit

spread St = SDef
t + ln(1 + cB).

(iii) The bank supply is constrained by the Value-at-Risk constraint when the

interest rate is such as the credit spread verifies St > SDef
t + ln(1 + cB).

In this case, the bank supply of loan is given by the unique solution of the

equation

(56) Xt = (1− dt−1)π
B
t /V aRU

t .

(iv) For interest rates Rt such as V aRU
t ≤ 0, the bank supplies any level of

credit demand as long as the loan interest rate implies non-negative profit

Rt ≥ RDef
t (1 + cB).

PROOF:

See appendix C.C8.

In the proposition above, (i) corresponds to the case where the representative

bank does not supply credit because the loan rate is not enough to compensate

for expected default losses. Case (ii) is where the bank’s credit supply is not con-

strained by the VaR limit. When bank lending is limited by the VaR constraint,

credit supply is determined by the VaR constraint and credit spreads exceed the

level required to compensate for future default losses (case (iii)). Finally, when

the loan rate Rt is high enough and the unit VaR turns non-positive, the bank

can meet any level of credit demand at an interest rate implying a non-negative

profit (case (iv)).
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B. Economic capital Value-at-Risk

I now turn to the economic capital VaR introduced in section II.C and start

by making the assumption below regarding the return on capital at the V aR

scenario. The assumption is equivalent to a log-linear, first-order approximation

of the return on capital RI
t near the steady state.

ASSUMPTION 3: Assume that the economy’s agents estimate the Value-at-Risk

return on capital investment scenario through the log-linear relationship

(57) ln(RI,V aR
t ) = ln(Et[R

I
t+1])− αRI ϵV aR,

where αRI is a constant.

Assumption 3 enables us to write the economic capital V aR distance-to-default as

a function of the next period defaults expectations and the model’s parameters.

PROPOSITION 5: Under assumption 3, the V aR default rate scenario fluctua-

tions are solely driven by changes in the next period distribution of defaults

(58) ξV aR
t =

1

σK
ln
(
Ete

σKξt+1

)
−∆ξV aR,

where ∆ξV aR =
α
RI

σK
ϵV aR is a constant that depends on the severity of the Value-

at-Risk adverse shock scenario ϵV aR.

PROOF:

See appendix C.C9.

A first-order approximation of equation 58 clarifies the result of proposition 5

(59) ξV aR
t ≈ Et[ξt+1]−∆ξV aR.

The distance-to-default at the Value-at-Risk scenario is reduced below its ex-

pected level by a quantity that depends on the drop in log TFP (ϵV aR) associated

with the Value-at-Risk scenario. To bring the behaviour of this model closer to

that in Gourio (2013), where changes in credit premia are modelled as originat-

ing from fluctuations in the likelihood of large adverse shocks to the economy,

we could assume that the probability of the jump affecting TFP µt is stochastic

and driven by an exogenous process. Alternatively, we could assume that the
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calculation of the V aR is based on a scenario with fluctuating severity to reflect

changes in the risk aversion of financial intermediaries. This could be achieved by

assuming that the V aR probability (pV aR) is driven by an exogenous process that

causes financial intermediaries to index their risk scenario to different quantiles

of the TFP distribution.15

The proposition below rewrites the results of proposition 4 when the bank

operates under an economic capital VaR. It expresses credit supply as a function

of the loan credit spread.16

PROPOSITION 6: The bank’s loan supply function can be described as follows

• The bank does not supply credit when St < SDef
t + ln(1 + cB).

• The bank supply meets any level of loan demand up to
EB

t /(1+cB)

1−exp(SDef
t −SV aR

t )
,

charging the credit spread St = SDef
t + ln(1 + cB).

• The bank supply is constrained by the Value-at-Risk constraint when the

interest rate is such as SDef
t + ln(1+ cB) < St < SV aR

t + ln(1+ cB). In this

case, the bank supply of loan is given by

(60) Xt =
EB

t

1 + cBt − exp(St − SV aR
t )

.

• The bank’s supply of loans becomes infinitely high as the charged credit

spread St approaches the limit SV aR
t + ln(1 + cB) from below; the credit

spread never reaches or surpasses the limit value SV aR
t + ln(1 + cB).

PROOF:

Replace for V aRU in proposition 4 using equation 39.

Figure 2 shows that loan supply by the representative bank is increasing in

the credit spread St and implies an acceptable range for credit spreads between

SDef
t + ln(1 + cB) and SV aR

t + ln(1 + cB). Unsurprisingly, the bank refrains

from supplying credit when the price of credit is not enough to compensate for

lending costs and for expected default losses (St < SDef
t + ln(1+ cB)). The bank

15To explore the nonlinear effects, write the second-order approximation of equation 58 ξV aR
t ≈

Et[ξt+1]−∆ξV aR + σK
2

{
Et[ξ2t+1]− Et[ξt+1]2

}
. The magnitude of the second-order effects depends on

σK and the variance of ξt+1.
16This is equivalent to supplying credit at a given loan rate level. There is a one-to-one relationship

between the credit spread St and the loan rate Rt = RD
t eSt .
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meets any level of credit demand without charging a VaR-related risk premium

(St = SDef
t + ln(1+ cB)) up to

EB
t /(1+cB)

1−exp(SDef
t −SV aR

t )
before its VaR constraint binds.

Credit supply is then constrained by the bank’s VaR rule and is increasing in

the credit spread St. When the VaR constraint is binding, the bank charges a

credit spread premium SPrem
t := St−SDef

t that exceeds what is required to cover

lending costs SPrem
t > ln(1+ cB). Finally, the bank will meet any credit demand

for a credit spread lower than SV aR
t + ln(1 + cB) and the market’s credit spread

never reaches the latter limit.

Figure 2. Credit supply by the representative bank

Proposition 7 expresses the steady-state interest rate charged to the borrowing

firm, corrected for lending costs, as a weighted harmonic mean of the fundamental

interest rate required to compensate for future defaults RDef and the Value-at-

Risk scenario interest rate RV aR = RDeS
V aR

.

PROPOSITION 7: Assuming the VaR constraint is binding in the steady state,

the steady-state loan interest the bank is R given by

(61)
1

R
=

1

1 + cB

{
1

1 + rE
1

RDef
+

rE

1 + rE
1

RV aR

}
,

where RDef is the steady state-value of RDef
t defined in 50, RV aR is the steady-

state value of RV aR
t := RD

t e
SV aR
t and SV aR

t is defined by expression 38. In credit
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spread terms, one can write

(62) e−S =
1

1 + cB

{
1

1 + rE
e−SDef

+
rE

1 + rE
e−SV aR

}
,

where SDef := ln(RDef/RD).

PROOF:

Replace for V aRU in proposition 3 using equation 39.

Note that the VaR scenario impacts the steady-state loan rate more when the

bank’s equity capital is expensive (high rE). In the absence of an equity risk

premium (rE = 0), the bank charges the steady-state loan rate that compensates

for its lending costs and expected default losses (R = (1 + cB)RDef ). In the

steady state, The bank charges a positive credit spread reflecting expensive equity

financing (rE > 0) made necessary by the limit on leverage imposed by the binding

VaR constraint.

PROPOSITION 8: Assuming that the VaR constraint is binding near the steady

state, then credit market clears at the level of bank leverage that is a unique

solution to the equation below

(63)
1

λB
t

= 1 + cB − g′(EB
t λB

t )e
−SV aR

t {EtR
I
t+1/R

D
t }.

Equation 63 implies that the following results hold near the steady state.

• Given the level of bank equity EB
t and the level of SV aR

t , leverage increases

with the level of demand for credit summarised by the variable EtR
I
t+1/R

D
t .

• Given the levels of EB
t and EtR

I
t+1/R

D
t , leverage decreases with SV aR

t .

• Given the levels of SV aR
t and EtR

I
t+1/R

D
t , leverage decreases with the bank

equity EB
t .

In addition, the equation below describes the dynamics of credit spreads

(64) eSt

{
g′
(

EB
t

1 + cB − eS
t−SV aR

t

)}−1

=
EtR

I
t+1

RD
t

.

Credit spreads increase with demand
EtRI

t+1

RD
t

and the VaR scenario credit spread

SV aR
t and decrease with EB

t .



VOL. NO. DEFAULTS, VAR AND THE BUSINESS CYCLE 33

PROOF:

See appendix C.C10.

The results of proposition 8 clarify the factors affecting the bank leverage dynam-

ics in the model. These factors are the bank equity EB
t = (1− dt−1)π

B
t , which is

determined by the performance of the bank’s portfolio; the loan demand driven

by the variable EtR
I
t+1/R

D
t ; and the credit spread reflecting the riskiness of the

VaR scenario SV aR
t .17 Ceteris paribus, leverage increases with loan demand and

decreases with the level of bank equity and the VaR credit spread SV aR
t . The

overall impact of fluctuations on bank leverage depends on which effect prevails.

After a shock that reduces bank equity more than future expectations of defaults

and future returns on capital investment, the bank compensates for the loss of

equity by increasing leverage, thus reducing the shock’s impact on credit supply.

On the other hand, a shock that increases future default expectations (thus in-

creasing SV aR) without a substantially increasing contemporaneous default that

matters to the bank equity or a significantly increasing loan demand would tend

to reduce leverage. Finally, shocks that only affect the expected return on capital

investments would push the bank to accommodate the changes in loan demand

using leverage as a control variable.

The credit spreads dynamics are intuitive. Credit spreads decrease when the

bank balance sheet allows more lending (higher equity EB
t ) and when demand is

lower (lower EtR
I
t+1/R

D
t ) and increase when the bank adopts a more pessimistic

VaR default scenario (higher SV aR). This also means that credit spreads can be

procyclical when shocks reduce demand for loans more than the bank equity and

the bank’s appetite for risk.

Note that the non-linearity of the capital production function is crucial for the

bank’s equity to have a direct effect on leverage. A linear capital production

function (g′ = 1) is a common assumption in economic literature.18 Maintaining

this assumption in the current set-up would mute the direct effects of the bank

equity on leverage. Thus implying that leverage is always procyclical. Similarly,

g′ = 1 implies that credit spreads display the same cyclical behaviour as loan

demand.

17See the first-order condition 12 for why demand for loans is driven by EtRI
t+1/R

D
t .

18Firms or entrepreneurs linearly transforming capital with an a posteriori multiplicative idiosyncratic
affecting capital production is a ubiquitous assumption in the macro-finance literature (e.g. Bernanke,
Gertler and Gilchrist, 1998; Gourio, 2013; Nuño and Thomas, 2017, ...).
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IV. Model simulations and findings

The model simulation considers the impact of potential future large shocks on

risk premia through a V aR rule restricting the behaviour of financial interme-

diaries and ignores its effects on agents’ expectations otherwise. The simulation

is performed using second-order perturbation near the unique steady-state and

estimated aims at matching several empirical first and second moments of real

and financial variables at the annual frequency. The measure of the Value-at-

Risk used in this section corresponds to the economic capital VaR introduced in

definition 2 and studied analytically in subsection II.C, and exogenous shocks are

limited to unexpected TFP fluctuations.

A. Estimation and steady-state results

The model is estimated to match several first and second moments of several

RBC and financial sector aggregates. Following Christiano, Motto and Rostagno

(2010), the preferences discounting parameter β = 0.98 is chosen so that the

model’s steady-state deposit rate matches the average historical deposit rates in

the United States. The dislike for work parameter χ is chosen to match steady-

state labour at L = 0.33.

The volatility parameter affecting the riskiness of capital production σK is

important to the dynamics of default rates and the adjustment costs parameter

κK is important to the persistence of default rates and thus to the variance

of credit spreads. Through affecting credit markets, the parameters σK and κK

affect the output’s dynamics. The parameters (σK , κK , σa, ρa) are then estimated

for the model to match the historical standard deviations of the delinquency

rate of commercial and industrial loans (C&I loans), BAA-AAA credit spreads,

the combined assets of the aggregate financial intermediation sector in the U.S.,

the combined equity of the aggregate financial intermediation sector in the U.S.

and output; the historical correlation of the aggregate financial sector’s equity

and with output; and the historical output’s autocorrelation.19 The steady-state

distance to default given by ξ = − ln(γK)
σK

− σK
2 determines the steady-state default

rate is Φ(−ξ) . Given the value of σK , the parameter γK is calibrated to match the

average delinquency rate of C&I loans at 2.6%. The loss in production following

default θK is chosen to match the historical C&I loan charge-off average rates

19I use a simulated method of moments implemented in DYNARE.
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at 0.75%. The likelihood of a large TFP shock µa = 2% and their average size

Ja = 30% are borrowed from Barro (2006), while the standard deviation of the

shock size σJ = 30% is borrowed from Gourio (2013). The steady-state credit

spread matches the average historical net interest margin at S = 4%. The V aR

TFP shock scenario ϵV aR and the equity premium rE are calibrated to match the

steady-state credit spread at S = 4% and the steady-state leverage at λB = 12.5×.

The V aR probability corresponding to the distribution of TFP and the calibrated

TFP shock ϵV aR is pV aR = 99%. The calibrated value of pV aR is in line with values

used in practice (Ball and Fang, 2006).

Table 2 summarizes the model parameters, while Table 3 lists key steady-state

variables. Notably, the model’s implied steady-state credit spread S = 4% signifi-

cantly surpasses the credit spread from default risk alone, SDef = 0.81%. This ex-

cess premium encompasses both the bank’s operational lending costs (cB = 2.5%)

and the leverage limit due to the Value-at-Risk rule (the remaining 0.69%).

Additionally, Table 4 showcases the second moments of the primary variables.

The model closely replicates targeted second moments except for the model’s

generated bank equity standard deviation, which is about half its empirical coun-

terpart. The model-implied correlation between equity and output is close to zero

with the corresponding empirical correlation being statistically negligible. The

model-produced standard deviations of bank leverage and bank assets are close

to the values observed in the data. In addition, the model reproduces the correct

cyclical behaviour of bank assets, credit spreads, default rates and bank leverage,

as shown by the signs of the correlations between these variables and output.

However, the model dynamics imply higher correlations in absolute value. This

is expected in a model where a single exogenous process (TFP) drives all other

variables.

Increasing the V aR TFP shock scenario ϵV aR decreases the bank’s insolvency

probability (top-left panel of figure 3). However, a more resilient banking sector

comes at the cost of higher financing costs for the productive sector (bottom

panel of figure 3). Expensive financing of capital investments, in turn, decreases

the steady-state output (top-right panel of figure 3). The bottom panel of figure

3 shows that the increase in financing costs caused by a more resilient banking

sector is fully due to higher risk premia as the default risk among borrowing

firms is unaffected by the bank’s risk aversion. A more risk-averse banking sector

decreases insolvency risk by adopting a more severe VaR scenario. This increases
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the VaR credit spread SV aR, which, in turn, increases the risk premium Sprem

and the charged credit spread S.

Figure 3 shows that reducing the bank’s insolvency probability from 1.8% to

0.04% more than doubles the risk premium charged by banks (from 258bp to

597bp). The studied framework enables us to comment on the trade-offs between

a more resilient banking sector and cheap funding for the productive sector. This

framework, however, does not provide a way to quantify the welfare losses due

to banks’ insolvency. This means that we cannot make normative statements re-

garding the optimal level of insolvency risk from a macroprudential perspective.20

B. Dynamic effects

In this subsection, I show the dynamic effects of the model’s main assumptions

by studying the impulse response functions following negative shocks to the ag-

gregate total factor productivity Za
t . The model simulations are realised at the

annual frequency through perturbation techniques, using second-order approxi-

mations.

Figure 4 shows the impulse response function (IRF) of the model’s main credit

variables after one standard deviation unexpected negative shock to logarithmic

TFP (lnZa). The IRFs are shown for the main model as calibrated in section

IV.A (red, continuous line) and a version of the model assuming constant leverage

(λB
t = λB; blue, dashed lines). Except for the VaR-related parameters, both

models are simulated using the same set of parameters in table 2. In addition,

the constant leverage model assumes the same steady-state leverage as the main

model. This guarantees that the steady-state risk premium is the same in the

main model and the model with constant leverage. Clearly, the presence of the

VaR constraint increases the reaction of credit spreads to real shocks. This, in

turn, causes a larger drop in the loans dedicated to capital production in the

presence of a Value-at-Risk constraint on bank lending. Fluctuations in credit

spreads are larger under a VaR constraint because defaults are expected to be

higher in the following period (top-right panel). This is consistent with expression

58 showing that the VaR default scenario fluctuates solely because of changes to

default expectations.

Figure 4 also shows that immediately following the unexpected TFP shock, de-

20More steady-state results are presented in appendix D.D1.
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fault rates are lower when banks are constrained by a VaR rule (top-left panel).

The bottom panel of figure 4 helps explain this model feature. The figure shows

that immediately following real shocks, the drop in the return on capital invest-

ment RI is less pronounced when banks are constrained by a VaR rule. Propo-

sition 1 shows that the immediate reaction of default rates to shocks is solely

driven by changes in RI . This links the moderate increase in defaults at the time

of the shock under a VaR rule to the moderate drop in RI . The difference in the

behaviour of RI results from capital being more scarce under a VaR rule where

constrained lending reduces investment in new capital, thus increasing capital’s

marginal product.

The impulse responses of bank leverage, bank equity and bank lending are

shown in the left panel of figure 5. The figure shows the impact of higher default

rates on the bank’s equity: as the default rate unexpectedly increases at the time

of the shock, the bank’s equity is lower. If leverage were fixed, the decrease of the

bank equity would lead to the same relative drop in lending supply. Leverage,

however, is procyclical. The procyclical behaviour of banks’ leverage compounds

the effects of lower bank equity leading to more constrained bank lending. In

the period following the TFP shock, the bank can adjust its equity levels higher.

This is made easier by higher risk premia that imply higher bank profits (right

panel of figure 5). However, low bank leverage more than compensates for higher

equity so bank lending remains below its steady-state level in the period following

the shock. While fluctuations of expected defaults are the proximate reason for

credit spread fluctuations, most of the variance of credit spread comes in the form

of changes to credit premia. The simulation results are thus consistent with the

empirical findings in Gilchrist and Zakraǰsek (2012).

The procyclical behaviour of bank lending and bank leverage is in line with the

stylised facts discussed in section I. The model also reproduces the empirically

observed acyclical behaviour of bank equity. Equity decreases at the time of the

shock before increasing as the staggered bank equity reaction takes place. This

implies a low correlation between bank equity and output, as equity surpasses

its steady-state value before output recovers. This explanation is consistent with

the empirical behaviour of bank equity shown in figure 1, where the equity of

the aggregate financial sector appears to decrease in the early stages of the Great

Recession before recovering to higher levels in the later stages of the recession.

Figure 6 presents impulse responses following an adverse TFP shock when capi-
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tal production is riskier (σK = 0.1) and not subject to adjustments costs (κK = 0).

Higher σK implies higher default rates in the steady state, thus more fluctuation

in the bank’s equity due to higher than expected default rates. As discussed

above, in the absence of adjustment costs, both the default risk credit spread

and the VaR scenario credit spread remain stable (bottom panel of figure 6). In

line with the results of proposition 8, the larger impact of the TFP shock on

the bank’s equity through losses in the bank’s lending portfolio and the absence

of fluctuations in future default expectations imply countercyclical leverage (top

panel of figure 6). The results can also be read in light of the leverage constraint

40, as higher credit spreads S and stable VaR credit spreads SV aR also mean

higher and thus countercyclical leverage.

V. Concluding remarks

I present a simple general equilibrium model with endogenous defaults and a

financial intermediation sector subject to a Value-at-Risk rule. While default

rates in the model are too low to generate quantitatively realistic credit spreads,

the expectation of future default losses interacts with the financial intermediary’s

Value-at-Risk rule, generating an empirically plausible risk premium in the steady

state. In addition, the model generates quantitatively realistic credit spread dy-

namics, mainly driven by the fluctuations of risk premia. The fluctuations in

credit spreads are generated by changes in credit supply as bank leverage is con-

strained by a Value-at-Risk rule and frictions in equity financing prevent banks

from immediately replenishing their equity capital. Moreover, the model gener-

ates fluctuations in the financial sector’s balance sheet that are consistent with

empirical evidence. Namely, a procyclical supply of credit that is mainly driven

by procyclical fluctuations of leverage in the financial sector. The impact of

the model’s Value-at-Risk mechanisms on credit supply amplifies business cycle

fluctuations. In the presence of this mechanism, bank lending is more volatile,

leading to more volatile aggregate investments. The model’s relative simplicity

and analytical tractability make it easily extendable in ways that can shed light

on monetary policy, macroprudential policy and their areas of interaction.
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Appendix For Online Publication

Data Appendix

B1. Data sources and treatment

Balance sheet data of the aggregate financial sector is obtained from the equiv-

alent data for the four subsectors (US-chartered commercial banks, savings insti-

tutions, security brokers and dealers, and finance companies) for which data is

available in the Z.1 files of the U.S. Flow of Funds. Correction for discontinuity

in the balance sheet time series is applied following the methodology outlined in

the online appendix of Nuño and Thomas (2017).

The net interest rate margin time series is from the Federal Financial Insti-

tutions Examination Council (USNIM on FRED). The constant lending cost is

deduced from the average Bank’s Non-Interest Income to Total Income for the

United States for which the World Bank provides annual data between 2000 and

2020 (DDEI03USA156NWDB on FRED).

GDP and investment data are from the Bureau of Economic Analysis. All

cyclical time series have been detrended using a Hodrick-Prescott filter, with a

smoothing parameter of 1600 for quarterly data and 100 for annual data.

Following Gourio (2013), I show in figure B1 the time series of the difference be-

tween the yields of BAA-rated and AAA-rated bonds by Moody’s plotted against

aggregate investment in the United States. The BAA-AAA spread can be in-

terpreted as a credit spread attached to BAA-rated bonds, as the AAA-rated

securities are virtually risk-free. Credit spreads appear to be countercyclical, and

as expected by economic theory, are negatively correlated with aggregate invest-

ments.

Mathematical Appendix

C1. A useful lemma

LEMMA 1: If ϵ is a normal variable and A and S > 0 are two real numbers,

then

(C1)

∫ A

ϵ=−∞
eSϵ−S2/2dΦ(ϵ) = Φ(A− S).
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PROOF:

I write the integral in the lemma by replacing with the density of the normal

variable ∫ A

ϵ=−∞
eSϵ−S2/2dΦ(S) =

1√
2π

∫ A

ϵ=−∞
eSϵ−S2/2e−ϵ2/2dϵ

=
1√
2π

∫ A

ϵ=−∞
e−(ϵ−S)2/2dϵ

Through the change of variable ϵ′ = ϵ−A∫ A

ϵ=−∞
eSϵ−S2/2dΦ(S) =

1√
2π

∫ A−S

ϵ=−∞
e−(ϵ′)2/2dϵ

= Φ(A− S).

C2. Aggregate recovery expression

From 11 the firm i revenues from selling the produced final goods and produced

at time t capital are

(C2) RI
t e

σKϵi−σ2
K/2g(Xt−1).

The defaulting firms, i.e. those with an idiosyncratic shock lower than −ξt have

the aggregate revenues

(C3) (1− θK)RI
t g(Xt−1)

∫
ϵi<−ξt

eσKϵi−σ2
K/2.

Using the result in lemma 1 in the appendix, the amount recovered by banks is

(C4) Rect = (1− θK)RI
t g(Xt−1)Φ(−ξt − σK).
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The aggregate produced capital at each period is reduced by the amount lost to

bankruptcy workouts

(C5) It = g(Xt−1)

∫ +∞

ϵ=−∞
eσKϵ−σ2

K/2dΦ(ϵ)︸ ︷︷ ︸
=1

−θKg(Xt−1)

∫ −ξt

ϵ=−∞
eσKϵ−σ2

K/2dΦ(ϵ)︸ ︷︷ ︸
=Φ(−ξt−σK)

,

where the second term in the rhs represents the loss of output due to defaults.

Rewrite using the lemma

(C6) It = g(Xt−1) [1− θKΦ(−ξt − σK)] .

Replace for RI
t g(Xt−1) using the definition of distance to default 13 to get an

alternative recovery expression

(C7) Rect = (1− θK)Rt−1Xt−1e
σKξt+σ2

K/2Φ(−ξt − σK).

C3. VaR expression

Write the bank’s Value-at-Risk, using the aggregate recovery expression 20 and

the borrowing firm first-order condition

V aRt = (1 + cB)Xt −
Rt

RD
t

XtΦ(ξ
V aR
t )− 1

RD
t

RecV aR
t

= Xt

{
1 + cB − Rt

RD
t

[
Φ(ξV aR

t ) + (1− θK)eσKξV aR
t +σ2

K/2Φ(−ξV aR
t − σK)

]}
= Xt

{
1 + cB − eSt−SV aR

t

}
,

where by definition

(C8) SV aR
t := − ln

(
Φ(ξV aR

t ) + (1− θK)eσKξV aR
t +σ2

K/2Φ(−ξV aR
t − σK)

)
.

C4. Proof of proposition 1

The loan demand first-order condition writes

(C9)
RtXt

Et[RI
t+1]

= γKXγK
t

[
1− κK {(Xt/X)− 1}2

]
− 2κKXγK

t (Xt/X){Xt/X − 1}.
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Substitute into the distance-to-default definition 13 to obtain

σKξt+1 = − ln(γK)−
σ2
K

2
+ ln

(
RI

t+1

EtRI
t+1

)
− ln

(
1− 2κK

γK

(Xt/X){Xt/X − 1}
1 + κK{Xt/X − 1}2

)
.

(C10)

The proposition’s steady-state results obtains for Xt = X and the dynamics’

result from deducting the steady-state distance-to-default from C10.

C5. Proof of proposition 2

When both the leverage and the budget constraints are binding, the deposits

Dt are given by

(C11) Dt =
{
1 + cB − V aRU

t

}
Xt.

From expression 20, the recovery Rect is given by

(C12)
Rect

Rt−1Xt−1
= (1− θK)eσKξt+σ2

K/2Φ(−ξt − σK).

Replace for the recovery using C12 and for depositsDt usingDt = (1+cB)Xt−EB
t

πB
t+1 = RtXt

{
Φ(ξt+1) + (1− θK)eσKξt+1+σ2

K/2Φ(−ξt+1 − σK)− (1 + cB)e−St

}
+RD

t (1− dt−1)π
B
t .

(C13)

Replace using Xt =
EB

t

V aRU
t
=

(1−dt−1)πB
t

V aRU
t

in C13 to get the bank profit function at

the Value-at-Risk constraint

πB
t+1 = Rt(1− dt−1)

πB
t

V aRU
t{

Φ(ξt+1) + (1− θK)eσKξt+1+σ2
K/2Φ(−ξt+1 − σK)− (1 + cB − V aRU

t )e
−St

}
.

(C14)

One can rewrite the bank’s problem using the profit expression C14 that uses the

bank’s budget contract to replace for deposits and the binding VaR constraint to
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replace for the loan size. The bank’s problem thus becomes

(C15) max
ds

Et

∑
s≥t+1

mt,s

(1 + rEt )
s−t

ds−1π
B
s

subject to the repeated constraint on ds

(C16) s.t. ds ≤ 1,

and where the bank profit πB
s is given by expression C14. From expression C14

and given the assumption that the bank neglects the effect of its lending on default

probabilities and the VaR linearity assumption

(C17)
∂πB

t+2

∂dt
= −

πB
t+2

1− dt

and

(C18)
∂πB

t+s

∂dt
=

πB
t+s

πB
t+s−1

∂πB
t+s−1

∂dt
for s ≥ 3.

By iteration

(C19)
∂πB

t+s

∂dt
= −

πB
t+s

1− dt
for s ≥ 2.

Using the last expression and
∂dtπB

t+1

∂dt
= πB

t+1, the bank’s problem first-order

condition thus yields

(C20) Et
mt,t+1

1 + rE
EB

t+1 = Et
mt,t+1

1 + rE
V B
t+1.

where V B
t designates the bank’s value V B

t = Et
∑

s≥t+1
mt,s

1+rE
ds−1π

B
s .

C6. Lending when the VaR rule is not binding

The budget constraint yields the deposit expression below

(C21) Dt = (1 + cB)Xt − (1− dt−1)π
B
t .
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Plug into the definition of the bank profit along with the expression of Rect in 20

πB
t+1 = RtXt

{
Φ(ξt+1) + (1− θK)eσKξt+1+σ2

K/2Φ(−ξt+1 − σK)− RD
t

Rt
(1 + cB)

}
+RD

t (1− dt−1)π
B
t .

(C22)

In the absence of the Value-at-Risk constraint, rewrite the bank’s problem

(C23) max
Xs,ds

Et

∑
s≥t

mt,s

(1 + rEt )
s−t

ds−1π
B
s .

subject to the repeated constraint ds ≤ 1, and where the bank profit πB
s is given

by expression C22. Deriving with regard to dt

(C24) Etmt,t+1π
B
t+1 −Et

mt,t+2

1 + rEt
RD

t+1dtπ
B
t+2

The derivative above is positive near the steady state, implying a full distribution

of profits when leverage is unconstrained (dt = 1). The first-order condition with

regard to Xt writes

(C25) RtEt

{
Φ(ξt+1) + (1− θK)eσKξt+1+σ2

K/2Φ(−ξt+1 − σK)
}
= RD

t (1 + cB),

or Rt = (1 + cB)RDef
t .

C7. Proof of proposition 3

First, note the steady-state deposit rate follows immediately from the house-

holds’ Euler saving equation RD = 1/β. From the expression of the bank’s value

(C26) V B =
β

1 + rE − β
dπB.

The steady-state equity is given by

(C27) EB = (1− d)πB.
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Plug into the steady-state version of the first-order condition 47 to get

(1− d)πB =
β

1 + rE − β
dπB.(C28)

Rearrange

(C29) d = 1− β

1 + rE
.

Write the Value-at-Risk constraint again, replacing for πB and for D using C14

V aRUX = (1− d)X[
R
{
Φ(ξ) + (1− θK)eσKξ+σ2

K/2Φ(−ξ − σK)
}
−RD(1 + cB − V aRU )

](C30)

Replace for d using C29 and rearrange using the definition of the credit spread

R = eS/β

(C31) rEV aRU = eS
{
Φ(ξ) + (1− θK)eσKξ+σ2

K/2Φ(−ξ − σK)
}
− (1 + cB)

Using the definition of SDef

(C32) rEV aRU = eS−SDef − (1 + cB).

Rearrange

(C33) eS = eS
Def (

1 + cB + rEV aRU
)
.

C8. Proof of proposition 4

Replacing for for Rect+1 using expression 20, he bank’s profit is

πB
t+1 = RtXt

[
Φ(ξt+1) + (1− θK)eσKξt+1+σ2

K/2Φ(−ξt+1 − σK)
]

−RD
t (1 + cB)Xt +RD

t E
B
t .

(C34)

Noting that the bank neglects the impact of its marginal new lending on default

probabilities, one can write the first derivative of the bank profits with regard to
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the loan size Xt as follows

(C35)
∂πB

t+1

∂Xt
= Rt

{
Φ(ξt+1) + (1− θK)eσKξt+1+σ2

K/2Φ(−ξt+1 − σK)
}
−RD

t (1 + cB).

Clearly,
∂πB

t+1

∂Xt
≥ 0 if and only if Rt ≥ (1 + cB)RDef

t . Moreover, the case

Rt < (1+ cB)RDef
t can be excluded as the bank would not find it optimal to lend

in this case. One can, therefore, conclude that Rt ≥ (1 + cB)RDef
t .

Assuming Rt = (1 + cB)RDef
t , the V aR constraint binds when credit supply

reaches the limit

(C36) Xt =
EB

t

V aRU ((1 + cB)RDef
t ,D(ξt+1))

.

When Rt > (1 + cB)RDef
t The V aR constraint writes

(C37) Xt =
EB

t

V aRU (Rt,D(ξt+1))
,

thus determining the level of lending supply. This finishes the proposition’s proof.

C9. Proof of proposition 5

Write the definition of ξV aR
t and replace for QV aR

t using assumption 3.

ξV aR
t =

1

σK
ln

(
QV aR

t g(Xt)

RtXt

)
− σK

2

=
1

σK
ln(EtQt+1) +

1

σK
ln

(
g(Xt)

RtXt

)
− σK

2
− αRI

σK
ϵV aR.

From the definition of ξt+1

(C38) EtQt+1 =
RtXt

g(Xt)
Ete

σKξt+1+σ2
K/2.

Plug in the expression of ξV aR
t above

(C39) ξV aR
t =

1

σK
ln
(
Ete

σKξt+1

)
− αRI

σK
ϵV aR.
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C10. Proof of proposition 8

Combine the VaR constraint with the loan demand condition

(C40)
1

λB
t

= 1 + cB − g′(Xt)
EtR

I
t+1

RV aR
t

.

Replace for Xt using Xt = λB
t E

B
t and for RV aR

t using RV aR
t = RD

t e
SV aR
t

(C41)
1

λB
t

= 1 + cB − g′(EB
t λB

t )e
−SV aR

t
EtR

I
t+1

RD
t︸ ︷︷ ︸

:=Ht(λB
t )

.

Now, note that g′(X) is decreasing in X near the steady state.

g′(Xt) = γKXγK−1
t

[
1− κK {(Xt/X)− 1}2

]
− 2κKXγK

t (1/X){Xt/X − 1}

≈ γKXγK−1
t .

(C42)

Hence

g′′(X) = −γK(1− γK)XγK−2
t

[
1− κK {(Xt/X)− 1}2

]
− 4γKκKXγK−1

t (1/X){Xt/X − 1} − 2κKXγK
t (1/X2)

≈ −{γK(1− γK) + 2κK(X2
t /X

2)}XγK−2
t .

(C43)

As long as the bank’s equity remains positive, the left hand side of C41 is de-

creasing in λB
t and the right hand side of the same equation, noted Ht(λ

B
t ), is

increasing in λB
t . Given the limits of the two sides of equation C41 for λB

t near

zero and for very large value of λB
t , credit supply meets demand at a unique

equilibrium leverage λB
t . Given the values of EB

t and SV aR
t , Ht becomes smaller

for all values of λB
t when EtR

I
t+1/R

D
t is higher. This means that for given val-

ues of EB
t and SV aR

t , the equilibrium bank leverage increases with EtR
I
t+1/R

D
t .

Similarly, for given values of EB
t and EtR

I
t+1, the equilibrium bank leverage de-

creases with RV aR
t . Finally, for higher values of the bank equity, the application

λB
t → g′(EB

t λB
t ) is lower all values of λB

t , meaning that Ht becomes larger for

all values of λB
t . We can therefore conclude that for given values of SV aR

t and

EtR
I
t+1/R

D
t , the equilibrium bank leverage decreases with the bank equity EB

t .
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To get the dynamics of credit spreads replace using the binding VaR constraint

in the loan demand condition and rearrange

(C44) eSt

{
g′
(

EB
t

1 + cB − eS
t−SV aR

t

)}−1

=
EtR

I
t+1

RD
t

.

As argued above, g′ is decreasing near the steady state. This means that the RHS

of C44 is increasing St and EB
t and decreasing in SV aR

t . This means that the credit

spread increases with demand
EtRI

t+1

RD
t

and the VaR scenario credit spread SV aR
t

and decreases with EB
t .

Additional simulation results

D1. Additional steady-state results

Figure D1 shows the impact of the riskiness of capital production σK on the

steady-state model’s variables. The bottom panel shows that higher σK increases

the steady-state credit spread S, which in turn decreases the steady-state demand

for loans. Lower financing of capital production in the steady state leads to lower

steady-state output (top-left panel). The increase in steady-state credit spreads

is driven by higher steady-state default rates implying higher SDef , as the steady-

state credit spread premium SPrem remains stable. The credit spread reflecting

the riskiness of the VaR scenario SV aR also increases with σK in the steady state.

The increase in the steady-state credit spread S is outpaced by the increase in the

VaR credit spread SV aR. As per expression 40, this means that leverage decreases

with σK . Finally, the steady-state bank equity EB increases with σK . This is a

result of the behaviour of the steady-state leverage and lending (EB = X/λB).

It is worth noting that while the changes to σK have substantial effects on

the steady-state credit spreads, the impact on loan financing and output is less

significant. The steady-state credit spread increases from S = 256bp when σK =

1.4% to S = 725bp when the riskiness of capital production increases σK = 9%.

On the other hand, loan financing and output only decrease by 3.9% and 2.3%

respectively when σK increases from 1.4% to 9%. This can be explained by the

increase of the steady-state capital price Q that accompanies the increase in the

cost of financing. Q increases by 4.4% and this increase helps compensate for the
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increase in the cost of lending from the perspective of the firm.21 The changes

in Q reflect changes in the rental of capital over its lifetime. Any change in the

rental cost of capital RK = αY/K causes a larger change in Q.22 This moderating

effect of the price of capital also operates in the comparative statics of the equity

risk premium rE and the V aR TFP shock scenario ϵV aR presented below.

Figure D2 shows that the bank equity risk premium rE does not impact steady-

state default risk (SDef ) nor does it impact the riskiness of the VaR scenario

(SV aR). However, higher values of rE increase the impact of the VaR scenario on

credit supply thus increasing the steady-state credit spread S (see expression 62).

Higher steady-state credit spreads due to higher equity premia rE lower demand

for loans in the steady state. This means lower steady-state capital production

and output. The riskiness of the VaR scenario (SV aR) is unaffected by equity risk

premia, while the steady-state credit spread S increases with rE . This implies

that leverage increases with rE (equation 40).

The steady-state effects of the assumed V aR TFP shock scenario ϵV aR are

shown in figure D3. Higher values of ϵV aR increase the riskiness of the VaR

scenario, increasing the steady-state values of SV aR. This, in turn, increases

the steady-state credit spread S, through higher risk premia SPrem, while the

credit spreads reflecting default risk SDef do not change much with ϵV aR. The

increase in SV aR with ϵV aR is much larger than the increase in S. As a result,

leverage decreases with ϵV aR. The bank reacts to more stringent leverage limits

by increasing equity. Nonetheless, the increase in credit spreads S with ϵV aR

lowers the demand for loans, thus decreasing capital production and output.

D2. Additional IRF simulations

Costly adjustments to capital production, captured by the parameter κK , play

an important role in generating the dynamics of credit spreads. Figure D4 shows

the impulse responses of leverage, bank equity, loans and credit spreads following

an adverse TFP shock without adjustment costs (κK = 0). The figure shows that

in the absence of adjustment costs, default expectations do not fluctuate. This

is reflected by the muted response of the fundamental credit spreads SDef and

21See the demand for financing equation 12.
22The steady-state price of capital Q moves multiple folds the movement in the rental price of capital

RK = αY/K. From the steady-state version of the household’s capital first-order equation, and replacing

for the calibrated model parameters: Q = β
1−β(1−δ)

RK ≈ 8.3×RK .
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VaR Credit spreads SV aR (right panel). However, both credit spreads and credit

premia drop, indicating that the shock impacts credit supply less than demand.

In the absence of adjustment costs default expectations do not deteriorate and

credit supply remains high relative to the main calibration case. On the other

hand, leverage, bank equity and lending display procyclical behaviour at the time

of the unexpected shock (left panel). The immediate reaction of bank equity is

a consequence of the unexpected shock decreasing the return on investment RI

and thus increasing defaults (see equation 43). Leverage is lower because the

credit spread S is lower while the VaR credit spread SV aR remains stable (see

the leverage constraint 40). The absence of adjustment costs also implies that

the reaction of the credit spread S displays no persistence. This and the lack of

fluctuation of the VaR credit spread SV aR imply that leverage goes back to its

steady-state value in the period following the shock and the fluctuations of credit

supply are fully driven by the fluctuations of bank equity.
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Table 2—Assumed and calibrated model parameters.

Model parameter Value Source/target
Households preferences
σH risk aversion 1 macro. literature
ηH labour disutility curvature 1 macro. literature
β discount factor 0.98 macro. literature
χH disutility of labour 8.0 L = 0.3
Technology
α capital share 0.33 macro. literature
δ depreciation rate 10% macro. literature
TFP shocks
ρa shocks’ persistence 0.48 SMM
σa log TFP volatility 1.15% SMM
µa large shock probability 2% Barro (2006)
J̄ large shock size 30% Barro (2006)
σJ large shock std dev. 30% Gourio (2013)
Capital production
θK loss upon default 29% steady-state credit losses 0.7%
γK curvature parameter 0.85 Φ(−ξ) = 2.6%
σK idiosyncratic risk 5.77% SMM
κK adjustment cost 0.135 SMM
Banks
cB lending cost 2.5% U.S. banks data
rE equity premium 8.4% { rE and ϵV aR target
ϵV aR VaR TFP shock 32% the steady-state credit spread

at 4% and leverage at 8×}
pV aR V aR quantile 99.04% { Matches the value of ϵV aR

given Ja and µa}
αRI ln(Za) to ln(RI) coefficient 0.35 matches model dynamics

Note: SMM refers to the simulated method of moments used to determine the
set of parameters (σK , κK , σa, ρa).
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Table 3—Steady-state variables.

Variable Steady state
Debt level X 0.129
Output Y 0.571
Consumption C 0.439
Capital K 1.74
Investment I 0.174
Labour L 0.33
Default Rate Φ(−ξ) 2.6%
Distance to default ξ 1.94
Credit spread S 4%
Defaults-implied credit cpread SDef 0.81%
Credit Spread Premium SPrem 3.19%
VaR credit spread SV aR 9.6%
Leverage λB 12.5×
Unit V aR 0.08

Table 4—Second moments of log variables.

Variable Std. dev. Y correlation
Data model Data Model

Loans 5.5% 5.2% 49% 93%
Default rates 32% 32% -41% -61%
Credit spreads 33% 31% -19% -89%
Bank equity 4.0% 2.1% 7.7% -1.4%
Bank leverage 6.4% 5.1% 49% 94%

Std. dev. Autocorrelation
Data model Data Model

Output 1.7% 1.8% 47% 47%
Note: standard deviations of the main model variables and their correlations with output. The autocor-
relation of output is shown as it is a calibration target. All variables are in log form. All the model’s
moments targeted by the SMM routine are presented in bold in the table.
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Figure 3. Macroprudential tradeoff: Banks’ solvency, financing costs and output.

Note: The effect of increasing the bank’s targeted insolvency probability on the steady-state values of
output Y , the credit spread S, the default risk credit spread SDef , the credit risk premium SPrem and
the VaR scenario credit spread SV aR (rhs axis). The remaining model variables are the same as in table
2.
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Figure 4. Impulse response functions following an unexpected negative shock to TFP

Note: Impulse responses of default rates, credit spreads, credit premia, loans and the return on capital
investment RI in the main model as calibrated in section IV.A (red, continuous line) and a version of
the model assuming constant leverage (λB

t = λB ; blue, dashed lines) following −1× standard deviation
unexpected shock to log TFP. All variables are in logarithmic form and are expressed as deviations from
the steady state.
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Figure 5. The impulse response of leverage, equity and bank lending following a negative

shock to TFP

Note: Impulse responses of leverage λB , bank equity EB and lending X in the main model as calibrated
in section IV.A following −1× standard deviation unexpected shock to log TFP. All variables are in
logarithmic form and are expressed as deviations from the steady state.

Figure 6. The impulse response functions under a high steady-state default assumption.

Note: Impulse responses of leverage λB , bank equity EB , lending X, the credit spread S, credit risk
premia SPrem, fundamental credit spreads SDef and the VaR-scenario credit spreads SV aR in a model
that assumes no adjustment cost in capital production κK = 0 and a riskier capital production process
σK = 10% following −1× standard deviation unexpected shock to log TFP. The remaining model’s
parameters are the same as those as calibrated in section IV.A. All variables are in logarithmic form and
are expressed as deviations from the steady state.
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Figure B1. BAA-AAA spreads and aggregate investment in the United States.

Note: Data from Q1 1981 to Q2 2019. Both variables are expressed in log form and as deviations from
the trend. Shaded areas represent NBER recessions.
Source: U.S. Bureau of Economic Analysis and Moody’s.
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Figure D1. The effects of riskiness of capital production (σK) on steady-state variables.

Note: The effect of the riskiness of capital production σK on the steady-state values of bank equity EB ,
bank leverage λB , loan financing X, output Y , the credit spread S, the default risk credit spread SDef ,
the credit risk premium SPrem and the VaR scenario credit spread SV aR (rhs axis). The remaining
model parameters are the same as in table 2.
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Figure D2. The effects of banks’ equity risk premium (rE) on steady-state variables.

Note: The effect of the bank’s equity risk premium rE on the steady-state values of bank equity EB ,
bank leverage λB , loan financing X, output Y , the credit spread S, the default risk credit spread SDef ,
the credit risk premium SPrem and the VaR scenario credit spread SV aR (rhs axis). The remaining
model parameters are the same as in table 2.
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Figure D3. The effects of riskiness of the VaR scenario (ϵV aR) on steady-state variables.

Note: The effect of the VaR scenario’s assumed TFP shock ϵV aR on the steady-state values of bank
equity EB , bank leverage λB , loan financing X, output Y , the credit spread S, the default risk credit
spread SDef , the credit risk premium SPrem and the VaR scenario credit spread SV aR (rhs axis). The
remaining model parameters are the same as in table 2.
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Figure D4. The impulse response functions under no adjustment costs (κK = 0).

Note: Impulse responses of leverage λB , bank equity EB , lending X, the credit spread S, credit risk
premia SPrem, fundamental credit spreads SDef and the VaR-scenario credit spreads SV aR in a model
that assumes no adjustment cost in capital production κK = 0 following −1× standard deviation un-
expected shock to log TFP. The remaining model’s parameters are the same as those as calibrated in
section IV.A. All variables are in logarithmic form and are expressed as deviations from the steady state.


